A Unified Framework for Forward and Inverse Problems in Subsurface Imaging using Latent Space Translations Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.11247
In subsurface imaging, learning the mapping from velocity maps to seismic waveforms (forward problem) and waveforms to velocity (inverse problem) is important for several applications. While traditional techniques for solving forward and inverse problems are computationally prohibitive, there is a growing interest in leveraging recent advances in deep learning to learn the mapping between velocity maps and seismic waveform images directly from data. Despite the variety of architectures explored in previous works, several open questions still remain unanswered such as the effect of latent space sizes, the importance of manifold learning, the complexity of translation models, and the value of jointly solving forward and inverse problems. We propose a unified framework to systematically characterize prior research in this area termed the Generalized Forward-Inverse (GFI) framework, building on the assumption of manifolds and latent space translations. We show that GFI encompasses previous works in deep learning for subsurface imaging, which can be viewed as specific instantiations of GFI. We also propose two new model architectures within the framework of GFI: Latent U-Net and Invertible X-Net, leveraging the power of U-Nets for domain translation and the ability of IU-Nets to simultaneously learn forward and inverse translations, respectively. We show that our proposed models achieve state-of-the-art (SOTA) performance for forward and inverse problems on a wide range of synthetic datasets, and also investigate their zero-shot effectiveness on two real-world-like datasets. Our code is available at https://github.com/KGML-lab/Generalized-Forward-Inverse-Framework-for-DL4SI
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.11247
- https://arxiv.org/pdf/2410.11247
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403576565
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403576565Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.11247Digital Object Identifier
- Title
-
A Unified Framework for Forward and Inverse Problems in Subsurface Imaging using Latent Space TranslationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-15Full publication date if available
- Authors
-
N.K. Gupta, Medha Sawhney, Arka Daw, Youzuo Lin, Anuj KarpatneList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.11247Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.11247Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.11247Direct OA link when available
- Concepts
-
Space (punctuation), Inverse, Inverse problem, Computer science, Mathematics, Mathematical analysis, Geometry, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403576565 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.11247 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.11247 |
| ids.openalex | https://openalex.org/W4403576565 |
| fwci | |
| type | preprint |
| title | A Unified Framework for Forward and Inverse Problems in Subsurface Imaging using Latent Space Translations |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10271 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9980000257492065 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1908 |
| topics[0].subfield.display_name | Geophysics |
| topics[0].display_name | Seismic Imaging and Inversion Techniques |
| topics[1].id | https://openalex.org/T11609 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9945999979972839 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2212 |
| topics[1].subfield.display_name | Ocean Engineering |
| topics[1].display_name | Geophysical Methods and Applications |
| topics[2].id | https://openalex.org/T10892 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9890000224113464 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2212 |
| topics[2].subfield.display_name | Ocean Engineering |
| topics[2].display_name | Drilling and Well Engineering |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778572836 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6143874526023865 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q380933 |
| concepts[0].display_name | Space (punctuation) |
| concepts[1].id | https://openalex.org/C207467116 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5457141399383545 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4385666 |
| concepts[1].display_name | Inverse |
| concepts[2].id | https://openalex.org/C135252773 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4410698711872101 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1567213 |
| concepts[2].display_name | Inverse problem |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.40386760234832764 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.2856355905532837 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C134306372 |
| concepts[5].level | 1 |
| concepts[5].score | 0.15849676728248596 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[5].display_name | Mathematical analysis |
| concepts[6].id | https://openalex.org/C2524010 |
| concepts[6].level | 1 |
| concepts[6].score | 0.14320430159568787 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[6].display_name | Geometry |
| concepts[7].id | https://openalex.org/C111919701 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[7].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/space |
| keywords[0].score | 0.6143874526023865 |
| keywords[0].display_name | Space (punctuation) |
| keywords[1].id | https://openalex.org/keywords/inverse |
| keywords[1].score | 0.5457141399383545 |
| keywords[1].display_name | Inverse |
| keywords[2].id | https://openalex.org/keywords/inverse-problem |
| keywords[2].score | 0.4410698711872101 |
| keywords[2].display_name | Inverse problem |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.40386760234832764 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.2856355905532837 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[5].score | 0.15849676728248596 |
| keywords[5].display_name | Mathematical analysis |
| keywords[6].id | https://openalex.org/keywords/geometry |
| keywords[6].score | 0.14320430159568787 |
| keywords[6].display_name | Geometry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.11247 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.11247 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.11247 |
| locations[1].id | doi:10.48550/arxiv.2410.11247 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.11247 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5072800845 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2753-3029 |
| authorships[0].author.display_name | N.K. Gupta |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gupta, Naveen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5052645050 |
| authorships[1].author.orcid | https://orcid.org/0009-0001-3265-4557 |
| authorships[1].author.display_name | Medha Sawhney |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sawhney, Medha |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5076598286 |
| authorships[2].author.orcid | https://orcid.org/0009-0006-3319-1271 |
| authorships[2].author.display_name | Arka Daw |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Daw, Arka |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5001857687 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7337-6760 |
| authorships[3].author.display_name | Youzuo Lin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lin, Youzuo |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5081622450 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1647-3534 |
| authorships[4].author.display_name | Anuj Karpatne |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Karpatne, Anuj |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.11247 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Unified Framework for Forward and Inverse Problems in Subsurface Imaging using Latent Space Translations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10271 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9980000257492065 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1908 |
| primary_topic.subfield.display_name | Geophysics |
| primary_topic.display_name | Seismic Imaging and Inversion Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2331917905, https://openalex.org/W3155039083 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.11247 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.11247 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.11247 |
| primary_location.id | pmh:oai:arXiv.org:2410.11247 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.11247 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.11247 |
| publication_date | 2024-10-15 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 39, 108, 211 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.We | 106, 135, 157, 195 |
| abstract_inverted_index.as | 79, 152 |
| abstract_inverted_index.at | 231 |
| abstract_inverted_index.be | 150 |
| abstract_inverted_index.in | 42, 46, 69, 116, 142 |
| abstract_inverted_index.is | 20, 38, 229 |
| abstract_inverted_index.of | 66, 82, 88, 93, 99, 129, 155, 167, 177, 185, 214 |
| abstract_inverted_index.on | 126, 210, 223 |
| abstract_inverted_index.to | 9, 16, 49, 111, 187 |
| abstract_inverted_index.GFI | 138 |
| abstract_inverted_index.Our | 227 |
| abstract_inverted_index.and | 14, 31, 56, 96, 103, 131, 171, 182, 191, 207, 217 |
| abstract_inverted_index.are | 34 |
| abstract_inverted_index.can | 149 |
| abstract_inverted_index.for | 22, 28, 145, 179, 205 |
| abstract_inverted_index.new | 161 |
| abstract_inverted_index.our | 198 |
| abstract_inverted_index.the | 4, 51, 64, 80, 86, 91, 97, 120, 127, 165, 175, 183 |
| abstract_inverted_index.two | 160, 224 |
| abstract_inverted_index.GFI. | 156 |
| abstract_inverted_index.GFI: | 168 |
| abstract_inverted_index.also | 158, 218 |
| abstract_inverted_index.area | 118 |
| abstract_inverted_index.code | 228 |
| abstract_inverted_index.deep | 47, 143 |
| abstract_inverted_index.from | 6, 61 |
| abstract_inverted_index.maps | 8, 55 |
| abstract_inverted_index.open | 73 |
| abstract_inverted_index.show | 136, 196 |
| abstract_inverted_index.such | 78 |
| abstract_inverted_index.that | 137, 197 |
| abstract_inverted_index.this | 117 |
| abstract_inverted_index.wide | 212 |
| abstract_inverted_index.(GFI) | 123 |
| abstract_inverted_index.U-Net | 170 |
| abstract_inverted_index.While | 25 |
| abstract_inverted_index.data. | 62 |
| abstract_inverted_index.learn | 50, 189 |
| abstract_inverted_index.model | 162 |
| abstract_inverted_index.power | 176 |
| abstract_inverted_index.prior | 114 |
| abstract_inverted_index.range | 213 |
| abstract_inverted_index.space | 84, 133 |
| abstract_inverted_index.still | 75 |
| abstract_inverted_index.their | 220 |
| abstract_inverted_index.there | 37 |
| abstract_inverted_index.value | 98 |
| abstract_inverted_index.which | 148 |
| abstract_inverted_index.works | 141 |
| abstract_inverted_index.(SOTA) | 203 |
| abstract_inverted_index.Latent | 169 |
| abstract_inverted_index.U-Nets | 178 |
| abstract_inverted_index.X-Net, | 173 |
| abstract_inverted_index.domain | 180 |
| abstract_inverted_index.effect | 81 |
| abstract_inverted_index.images | 59 |
| abstract_inverted_index.latent | 83, 132 |
| abstract_inverted_index.models | 200 |
| abstract_inverted_index.recent | 44 |
| abstract_inverted_index.remain | 76 |
| abstract_inverted_index.sizes, | 85 |
| abstract_inverted_index.termed | 119 |
| abstract_inverted_index.viewed | 151 |
| abstract_inverted_index.within | 164 |
| abstract_inverted_index.works, | 71 |
| abstract_inverted_index.Despite | 63 |
| abstract_inverted_index.IU-Nets | 186 |
| abstract_inverted_index.ability | 184 |
| abstract_inverted_index.achieve | 201 |
| abstract_inverted_index.between | 53 |
| abstract_inverted_index.forward | 30, 102, 190, 206 |
| abstract_inverted_index.growing | 40 |
| abstract_inverted_index.inverse | 32, 104, 192, 208 |
| abstract_inverted_index.jointly | 100 |
| abstract_inverted_index.mapping | 5, 52 |
| abstract_inverted_index.models, | 95 |
| abstract_inverted_index.propose | 107, 159 |
| abstract_inverted_index.seismic | 10, 57 |
| abstract_inverted_index.several | 23, 72 |
| abstract_inverted_index.solving | 29, 101 |
| abstract_inverted_index.unified | 109 |
| abstract_inverted_index.variety | 65 |
| abstract_inverted_index.(forward | 12 |
| abstract_inverted_index.(inverse | 18 |
| abstract_inverted_index.advances | 45 |
| abstract_inverted_index.building | 125 |
| abstract_inverted_index.directly | 60 |
| abstract_inverted_index.explored | 68 |
| abstract_inverted_index.imaging, | 2, 147 |
| abstract_inverted_index.interest | 41 |
| abstract_inverted_index.learning | 3, 48, 144 |
| abstract_inverted_index.manifold | 89 |
| abstract_inverted_index.previous | 70, 140 |
| abstract_inverted_index.problem) | 13, 19 |
| abstract_inverted_index.problems | 33, 209 |
| abstract_inverted_index.proposed | 199 |
| abstract_inverted_index.research | 115 |
| abstract_inverted_index.specific | 153 |
| abstract_inverted_index.velocity | 7, 17, 54 |
| abstract_inverted_index.waveform | 58 |
| abstract_inverted_index.available | 230 |
| abstract_inverted_index.datasets, | 216 |
| abstract_inverted_index.datasets. | 226 |
| abstract_inverted_index.framework | 110, 166 |
| abstract_inverted_index.important | 21 |
| abstract_inverted_index.learning, | 90 |
| abstract_inverted_index.manifolds | 130 |
| abstract_inverted_index.problems. | 105 |
| abstract_inverted_index.questions | 74 |
| abstract_inverted_index.synthetic | 215 |
| abstract_inverted_index.waveforms | 11, 15 |
| abstract_inverted_index.zero-shot | 221 |
| abstract_inverted_index.Invertible | 172 |
| abstract_inverted_index.assumption | 128 |
| abstract_inverted_index.complexity | 92 |
| abstract_inverted_index.framework, | 124 |
| abstract_inverted_index.importance | 87 |
| abstract_inverted_index.leveraging | 43, 174 |
| abstract_inverted_index.subsurface | 1, 146 |
| abstract_inverted_index.techniques | 27 |
| abstract_inverted_index.unanswered | 77 |
| abstract_inverted_index.Generalized | 121 |
| abstract_inverted_index.encompasses | 139 |
| abstract_inverted_index.investigate | 219 |
| abstract_inverted_index.performance | 204 |
| abstract_inverted_index.traditional | 26 |
| abstract_inverted_index.translation | 94, 181 |
| abstract_inverted_index.characterize | 113 |
| abstract_inverted_index.prohibitive, | 36 |
| abstract_inverted_index.applications. | 24 |
| abstract_inverted_index.architectures | 67, 163 |
| abstract_inverted_index.effectiveness | 222 |
| abstract_inverted_index.respectively. | 194 |
| abstract_inverted_index.translations, | 193 |
| abstract_inverted_index.translations. | 134 |
| abstract_inverted_index.instantiations | 154 |
| abstract_inverted_index.simultaneously | 188 |
| abstract_inverted_index.systematically | 112 |
| abstract_inverted_index.Forward-Inverse | 122 |
| abstract_inverted_index.computationally | 35 |
| abstract_inverted_index.real-world-like | 225 |
| abstract_inverted_index.state-of-the-art | 202 |
| abstract_inverted_index.https://github.com/KGML-lab/Generalized-Forward-Inverse-Framework-for-DL4SI | 232 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |