A Unified Two-Stage Group Semantics Propagation and Contrastive Learning Network for Co-Saliency Detection Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2208.06615
Co-saliency detection (CoSOD) aims at discovering the repetitive salient objects from multiple images. Two primary challenges are group semantics extraction and noise object suppression. In this paper, we present a unified Two-stage grOup semantics PropagatIon and Contrastive learning NETwork (TopicNet) for CoSOD. TopicNet can be decomposed into two substructures, including a two-stage group semantics propagation module (TGSP) to address the first challenge and a contrastive learning module (CLM) to address the second challenge. Concretely, for TGSP, we design an image-to-group propagation module (IGP) to capture the consensus representation of intra-group similar features and a group-to-pixel propagation module (GPP) to build the relevancy of consensus representation. For CLM, with the design of positive samples, the semantic consistency is enhanced. With the design of negative samples, the noise objects are suppressed. Experimental results on three prevailing benchmarks reveal that TopicNet outperforms other competitors in terms of various evaluation metrics.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2208.06615
- https://arxiv.org/pdf/2208.06615
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4292107141
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4292107141Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2208.06615Digital Object Identifier
- Title
-
A Unified Two-Stage Group Semantics Propagation and Contrastive Learning Network for Co-Saliency DetectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-13Full publication date if available
- Authors
-
Zhenshan Tan, Cheng Chen, Keyu Wen, Yuzhuo Qin, Xiaodong GuList of authors in order
- Landing page
-
https://arxiv.org/abs/2208.06615Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2208.06615Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2208.06615Direct OA link when available
- Concepts
-
Computer science, Semantics (computer science), Consistency (knowledge bases), Natural language processing, Artificial intelligence, Representation (politics), Stage (stratigraphy), Object (grammar), Group (periodic table), Noise (video), Feature learning, Pattern recognition (psychology), Image (mathematics), Programming language, Organic chemistry, Political science, Paleontology, Law, Biology, Chemistry, PoliticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4292107141 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2208.06615 |
| ids.doi | https://doi.org/10.48550/arxiv.2208.06615 |
| ids.openalex | https://openalex.org/W4292107141 |
| fwci | |
| type | preprint |
| title | A Unified Two-Stage Group Semantics Propagation and Contrastive Learning Network for Co-Saliency Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11605 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Visual Attention and Saliency Detection |
| topics[1].id | https://openalex.org/T12650 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9527999758720398 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | Aesthetic Perception and Analysis |
| topics[2].id | https://openalex.org/T10971 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9103999733924866 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2809 |
| topics[2].subfield.display_name | Sensory Systems |
| topics[2].display_name | Olfactory and Sensory Function Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7334048748016357 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C184337299 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6377394199371338 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1437428 |
| concepts[1].display_name | Semantics (computer science) |
| concepts[2].id | https://openalex.org/C2776436953 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5800730586051941 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[2].display_name | Consistency (knowledge bases) |
| concepts[3].id | https://openalex.org/C204321447 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5692267417907715 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[3].display_name | Natural language processing |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5560520887374878 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C2776359362 |
| concepts[5].level | 3 |
| concepts[5].score | 0.553482174873352 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[5].display_name | Representation (politics) |
| concepts[6].id | https://openalex.org/C146357865 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5078709721565247 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1123245 |
| concepts[6].display_name | Stage (stratigraphy) |
| concepts[7].id | https://openalex.org/C2781238097 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4980742931365967 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[7].display_name | Object (grammar) |
| concepts[8].id | https://openalex.org/C2781311116 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4454529881477356 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q83306 |
| concepts[8].display_name | Group (periodic table) |
| concepts[9].id | https://openalex.org/C99498987 |
| concepts[9].level | 3 |
| concepts[9].score | 0.42044156789779663 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[9].display_name | Noise (video) |
| concepts[10].id | https://openalex.org/C59404180 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4129462242126465 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[10].display_name | Feature learning |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3862103521823883 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3614693284034729 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.14503762125968933 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C178790620 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[14].display_name | Organic chemistry |
| concepts[15].id | https://openalex.org/C17744445 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[15].display_name | Political science |
| concepts[16].id | https://openalex.org/C151730666 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[16].display_name | Paleontology |
| concepts[17].id | https://openalex.org/C199539241 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[17].display_name | Law |
| concepts[18].id | https://openalex.org/C86803240 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[18].display_name | Biology |
| concepts[19].id | https://openalex.org/C185592680 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[19].display_name | Chemistry |
| concepts[20].id | https://openalex.org/C94625758 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[20].display_name | Politics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7334048748016357 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/semantics |
| keywords[1].score | 0.6377394199371338 |
| keywords[1].display_name | Semantics (computer science) |
| keywords[2].id | https://openalex.org/keywords/consistency |
| keywords[2].score | 0.5800730586051941 |
| keywords[2].display_name | Consistency (knowledge bases) |
| keywords[3].id | https://openalex.org/keywords/natural-language-processing |
| keywords[3].score | 0.5692267417907715 |
| keywords[3].display_name | Natural language processing |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5560520887374878 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/representation |
| keywords[5].score | 0.553482174873352 |
| keywords[5].display_name | Representation (politics) |
| keywords[6].id | https://openalex.org/keywords/stage |
| keywords[6].score | 0.5078709721565247 |
| keywords[6].display_name | Stage (stratigraphy) |
| keywords[7].id | https://openalex.org/keywords/object |
| keywords[7].score | 0.4980742931365967 |
| keywords[7].display_name | Object (grammar) |
| keywords[8].id | https://openalex.org/keywords/group |
| keywords[8].score | 0.4454529881477356 |
| keywords[8].display_name | Group (periodic table) |
| keywords[9].id | https://openalex.org/keywords/noise |
| keywords[9].score | 0.42044156789779663 |
| keywords[9].display_name | Noise (video) |
| keywords[10].id | https://openalex.org/keywords/feature-learning |
| keywords[10].score | 0.4129462242126465 |
| keywords[10].display_name | Feature learning |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.3862103521823883 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/image |
| keywords[12].score | 0.3614693284034729 |
| keywords[12].display_name | Image (mathematics) |
| keywords[13].id | https://openalex.org/keywords/programming-language |
| keywords[13].score | 0.14503762125968933 |
| keywords[13].display_name | Programming language |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2208.06615 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2208.06615 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2208.06615 |
| locations[1].id | doi:10.48550/arxiv.2208.06615 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2208.06615 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5064787764 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3466-5417 |
| authorships[0].author.display_name | Zhenshan Tan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tan, Zhenshan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100420548 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4203-2145 |
| authorships[1].author.display_name | Cheng Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, Cheng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5004061050 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5048-9014 |
| authorships[2].author.display_name | Keyu Wen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wen, Keyu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5033550999 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7738-3180 |
| authorships[3].author.display_name | Yuzhuo Qin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Qin, Yuzhuo |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101294804 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Xiaodong Gu |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Gu, Xiaodong |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2208.06615 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Unified Two-Stage Group Semantics Propagation and Contrastive Learning Network for Co-Saliency Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11605 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Visual Attention and Saliency Detection |
| related_works | https://openalex.org/W2503350049, https://openalex.org/W2329386257, https://openalex.org/W2397616145, https://openalex.org/W2397320258, https://openalex.org/W1603736412, https://openalex.org/W4324058133, https://openalex.org/W648618910, https://openalex.org/W4393624937, https://openalex.org/W4323929292, https://openalex.org/W4390871823 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2208.06615 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2208.06615 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2208.06615 |
| primary_location.id | pmh:oai:arXiv.org:2208.06615 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2208.06615 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2208.06615 |
| publication_date | 2022-08-13 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 29, 50, 63, 93 |
| abstract_inverted_index.In | 24 |
| abstract_inverted_index.an | 78 |
| abstract_inverted_index.at | 4 |
| abstract_inverted_index.be | 44 |
| abstract_inverted_index.in | 141 |
| abstract_inverted_index.is | 116 |
| abstract_inverted_index.of | 88, 102, 110, 121, 143 |
| abstract_inverted_index.on | 131 |
| abstract_inverted_index.to | 57, 68, 83, 98 |
| abstract_inverted_index.we | 27, 76 |
| abstract_inverted_index.For | 105 |
| abstract_inverted_index.Two | 13 |
| abstract_inverted_index.and | 20, 35, 62, 92 |
| abstract_inverted_index.are | 16, 127 |
| abstract_inverted_index.can | 43 |
| abstract_inverted_index.for | 40, 74 |
| abstract_inverted_index.the | 6, 59, 70, 85, 100, 108, 113, 119, 124 |
| abstract_inverted_index.two | 47 |
| abstract_inverted_index.CLM, | 106 |
| abstract_inverted_index.With | 118 |
| abstract_inverted_index.aims | 3 |
| abstract_inverted_index.from | 10 |
| abstract_inverted_index.into | 46 |
| abstract_inverted_index.that | 136 |
| abstract_inverted_index.this | 25 |
| abstract_inverted_index.with | 107 |
| abstract_inverted_index.(CLM) | 67 |
| abstract_inverted_index.(GPP) | 97 |
| abstract_inverted_index.(IGP) | 82 |
| abstract_inverted_index.TGSP, | 75 |
| abstract_inverted_index.build | 99 |
| abstract_inverted_index.first | 60 |
| abstract_inverted_index.grOup | 32 |
| abstract_inverted_index.group | 17, 52 |
| abstract_inverted_index.noise | 21, 125 |
| abstract_inverted_index.other | 139 |
| abstract_inverted_index.terms | 142 |
| abstract_inverted_index.three | 132 |
| abstract_inverted_index.(TGSP) | 56 |
| abstract_inverted_index.CoSOD. | 41 |
| abstract_inverted_index.design | 77, 109, 120 |
| abstract_inverted_index.module | 55, 66, 81, 96 |
| abstract_inverted_index.object | 22 |
| abstract_inverted_index.paper, | 26 |
| abstract_inverted_index.reveal | 135 |
| abstract_inverted_index.second | 71 |
| abstract_inverted_index.(CoSOD) | 2 |
| abstract_inverted_index.NETwork | 38 |
| abstract_inverted_index.address | 58, 69 |
| abstract_inverted_index.capture | 84 |
| abstract_inverted_index.images. | 12 |
| abstract_inverted_index.objects | 9, 126 |
| abstract_inverted_index.present | 28 |
| abstract_inverted_index.primary | 14 |
| abstract_inverted_index.results | 130 |
| abstract_inverted_index.salient | 8 |
| abstract_inverted_index.similar | 90 |
| abstract_inverted_index.unified | 30 |
| abstract_inverted_index.various | 144 |
| abstract_inverted_index.TopicNet | 42, 137 |
| abstract_inverted_index.features | 91 |
| abstract_inverted_index.learning | 37, 65 |
| abstract_inverted_index.metrics. | 146 |
| abstract_inverted_index.multiple | 11 |
| abstract_inverted_index.negative | 122 |
| abstract_inverted_index.positive | 111 |
| abstract_inverted_index.samples, | 112, 123 |
| abstract_inverted_index.semantic | 114 |
| abstract_inverted_index.Two-stage | 31 |
| abstract_inverted_index.challenge | 61 |
| abstract_inverted_index.consensus | 86, 103 |
| abstract_inverted_index.detection | 1 |
| abstract_inverted_index.enhanced. | 117 |
| abstract_inverted_index.including | 49 |
| abstract_inverted_index.relevancy | 101 |
| abstract_inverted_index.semantics | 18, 33, 53 |
| abstract_inverted_index.two-stage | 51 |
| abstract_inverted_index.(TopicNet) | 39 |
| abstract_inverted_index.benchmarks | 134 |
| abstract_inverted_index.challenge. | 72 |
| abstract_inverted_index.challenges | 15 |
| abstract_inverted_index.decomposed | 45 |
| abstract_inverted_index.evaluation | 145 |
| abstract_inverted_index.extraction | 19 |
| abstract_inverted_index.prevailing | 133 |
| abstract_inverted_index.repetitive | 7 |
| abstract_inverted_index.Co-saliency | 0 |
| abstract_inverted_index.Concretely, | 73 |
| abstract_inverted_index.Contrastive | 36 |
| abstract_inverted_index.PropagatIon | 34 |
| abstract_inverted_index.competitors | 140 |
| abstract_inverted_index.consistency | 115 |
| abstract_inverted_index.contrastive | 64 |
| abstract_inverted_index.discovering | 5 |
| abstract_inverted_index.intra-group | 89 |
| abstract_inverted_index.outperforms | 138 |
| abstract_inverted_index.propagation | 54, 80, 95 |
| abstract_inverted_index.suppressed. | 128 |
| abstract_inverted_index.Experimental | 129 |
| abstract_inverted_index.suppression. | 23 |
| abstract_inverted_index.group-to-pixel | 94 |
| abstract_inverted_index.image-to-group | 79 |
| abstract_inverted_index.representation | 87 |
| abstract_inverted_index.substructures, | 48 |
| abstract_inverted_index.representation. | 104 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |