A Universal Exponential Law for Real Alternative Algebras and its Geometric Applications Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.17575548
Euler's identity $e^{i\theta}=\cos\theta+i\sin\theta$ and De~Moivre's formula describe rotations generated by an imaginary unit $i$ satisfying $i^2=-1$. In associative and alternative hypercomplex algebras, however, arbitrary elements $A$ need not square to $-1$, the exponential map may lose geometric meaning, and fractional powers $A^x$ often lack closed forms. This paper systematizes existing exponential formulas into a unified algorithmic framework with computational advantages.F admits a two-term Euler-type fractional power: \emph{$A^x$ has a closed form if and only if $A^2$ is a nonzero real scalar}. When $A^2<0$ we obtain the elliptic (rotation) formula with $ \alpha^x= (\sqrt{\lvert A^{2} \rvert})^{x} \in \mathbb{R}_{>0} $ \[ A^x = \alpha^x\!\left[\cos\Bigl(\tfrac{\pi x}{2}\Bigr) + E\sin\Bigl(\tfrac{\pi x}{2}\Bigr)\right], \qquad E=\frac{A}{\sqrt{-A^2}},\; E^2=-1, \] extending Euler and De~Moivre to all alternative algebras, including quaternions and octonions. When $A^2>0$, we obtain the symmetric hyperbolic (boost) formula \[ A^x = \alpha^x\!\left[\cosh\Bigl(\tfrac{\pi x}{2}\Bigr) + H\sinh\Bigl(\tfrac{\pi x}{2}\Bigr)\right], \qquad H=\frac{A}{\sqrt{A^2}},\; H^2=+1, \] which covers split-quaternions and other hyperbolic directions. Both formulas follow from the principal logarithm $\log(A)=A\pi/2$ on the generated $1$--$A$ plane and remain valid for all real fractional exponents. A collapse identity is proved: \[ A^{A x}= \exp(A^2\pi x/2), \] giving the classical $i^i=e^{-\pi/2}$ and its hyperbolic analogues as special cases. When $A^2\notin\mathbb{R}$ or $A$ is a zero divisor (as in the sedenions), the two-term formulas fail exactly, giving a precise obstruction. This yields an algorithmic framework for fractional exponentiation in all Cayley--Dickson and split algebras: test $A^2$, normalize, and apply the elliptic or hyperbolic closed form when allowed. Applications include hypercomplex cyclotomy, Galois actions along arbitrary imaginary directions, and rotation/boost operators in higher dimensions. All claims are supported by independent numerical validation, with reproducible code provided. Critically, we demonstrate that this algebraic approach eliminates the need for the computationally expensive \texttt{arctan2} function required by standard polar decomposition methods. Benchmarking against standard library implementations reveals a mean computational speedup of approximately $2x+$ times faster for quaternion roots than SciPy Rotation as standard library, attributed to the replacement of transcendental inverse trigonometric functions with hardware-accelerated algebraic operations. Numerical validation confirms that this performance gain incurs no penalty in accuracy, maintaining machine precision ($10^{-16}$) and exhibiting superior stability near the identity element. This method offers a unified, high-performance primitive for geometric rotations in computer graphics, robotics, and hypercomplex neural networks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.17575548
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7104645412
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7104645412Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.17575548Digital Object Identifier
- Title
-
A Universal Exponential Law for Real Alternative Algebras and its Geometric ApplicationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-08Full publication date if available
- Authors
-
ben abdessalem, maherList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.17575548Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.17575548Direct OA link when available
- Concepts
-
Mathematics, Hypercomplex number, Exponentiation, Euler's formula, Algebra over a field, Pure mathematics, Logarithm, Quaternion, Exponential function, Divisor (algebraic geometry), Galois theory, Identity (music), Complex plane, Elliptic curve, Jacobi elliptic functions, Hyperbolic function, Modular elliptic curve, Hyperbolic geometry, Exponential formula, Discrete logarithm, Boundary (topology), Square root, Unit disk, Mathematical analysis, Elliptic operator, Algebraic number, Discrete mathematics, Operator (biology), Zero divisor, Matrix exponentialTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7104645412 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.17575548 |
| ids.doi | https://doi.org/10.5281/zenodo.17575548 |
| ids.openalex | https://openalex.org/W7104645412 |
| fwci | |
| type | preprint |
| title | A Universal Exponential Law for Real Alternative Algebras and its Geometric Applications |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C33923547 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8364702463150024 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[0].display_name | Mathematics |
| concepts[1].id | https://openalex.org/C203249530 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7270235419273376 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q837414 |
| concepts[1].display_name | Hypercomplex number |
| concepts[2].id | https://openalex.org/C81539297 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5195799469947815 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q33456 |
| concepts[2].display_name | Exponentiation |
| concepts[3].id | https://openalex.org/C62884695 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5022621154785156 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q184871 |
| concepts[3].display_name | Euler's formula |
| concepts[4].id | https://openalex.org/C136119220 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4520670771598816 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1000660 |
| concepts[4].display_name | Algebra over a field |
| concepts[5].id | https://openalex.org/C202444582 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4506716728210449 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[5].display_name | Pure mathematics |
| concepts[6].id | https://openalex.org/C39927690 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45037350058555603 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11197 |
| concepts[6].display_name | Logarithm |
| concepts[7].id | https://openalex.org/C200127275 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44870471954345703 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q173853 |
| concepts[7].display_name | Quaternion |
| concepts[8].id | https://openalex.org/C151376022 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44858941435813904 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q168698 |
| concepts[8].display_name | Exponential function |
| concepts[9].id | https://openalex.org/C203492994 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4290092885494232 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q909669 |
| concepts[9].display_name | Divisor (algebraic geometry) |
| concepts[10].id | https://openalex.org/C94398972 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3633078336715698 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q92552 |
| concepts[10].display_name | Galois theory |
| concepts[11].id | https://openalex.org/C2778355321 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3487361967563629 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q17079427 |
| concepts[11].display_name | Identity (music) |
| concepts[12].id | https://openalex.org/C179117685 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3433307409286499 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q328998 |
| concepts[12].display_name | Complex plane |
| concepts[13].id | https://openalex.org/C179603306 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3258836567401886 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q268493 |
| concepts[13].display_name | Elliptic curve |
| concepts[14].id | https://openalex.org/C73749972 |
| concepts[14].level | 2 |
| concepts[14].score | 0.30353695154190063 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1473526 |
| concepts[14].display_name | Jacobi elliptic functions |
| concepts[15].id | https://openalex.org/C92047909 |
| concepts[15].level | 2 |
| concepts[15].score | 0.27208051085472107 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q204034 |
| concepts[15].display_name | Hyperbolic function |
| concepts[16].id | https://openalex.org/C73683783 |
| concepts[16].level | 4 |
| concepts[16].score | 0.27137935161590576 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2728886 |
| concepts[16].display_name | Modular elliptic curve |
| concepts[17].id | https://openalex.org/C206352148 |
| concepts[17].level | 3 |
| concepts[17].score | 0.2699142396450043 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q209306 |
| concepts[17].display_name | Hyperbolic geometry |
| concepts[18].id | https://openalex.org/C92867014 |
| concepts[18].level | 4 |
| concepts[18].score | 0.26922982931137085 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5421523 |
| concepts[18].display_name | Exponential formula |
| concepts[19].id | https://openalex.org/C173259116 |
| concepts[19].level | 4 |
| concepts[19].score | 0.26653462648391724 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q864003 |
| concepts[19].display_name | Discrete logarithm |
| concepts[20].id | https://openalex.org/C62354387 |
| concepts[20].level | 2 |
| concepts[20].score | 0.26591432094573975 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q875399 |
| concepts[20].display_name | Boundary (topology) |
| concepts[21].id | https://openalex.org/C11577676 |
| concepts[21].level | 2 |
| concepts[21].score | 0.2563040256500244 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q134237 |
| concepts[21].display_name | Square root |
| concepts[22].id | https://openalex.org/C47177299 |
| concepts[22].level | 2 |
| concepts[22].score | 0.2561799883842468 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q2390323 |
| concepts[22].display_name | Unit disk |
| concepts[23].id | https://openalex.org/C134306372 |
| concepts[23].level | 1 |
| concepts[23].score | 0.25607433915138245 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[23].display_name | Mathematical analysis |
| concepts[24].id | https://openalex.org/C70610323 |
| concepts[24].level | 2 |
| concepts[24].score | 0.25472041964530945 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q427625 |
| concepts[24].display_name | Elliptic operator |
| concepts[25].id | https://openalex.org/C9376300 |
| concepts[25].level | 2 |
| concepts[25].score | 0.2529735565185547 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q168817 |
| concepts[25].display_name | Algebraic number |
| concepts[26].id | https://openalex.org/C118615104 |
| concepts[26].level | 1 |
| concepts[26].score | 0.2528758943080902 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[26].display_name | Discrete mathematics |
| concepts[27].id | https://openalex.org/C17020691 |
| concepts[27].level | 5 |
| concepts[27].score | 0.2526249885559082 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q139677 |
| concepts[27].display_name | Operator (biology) |
| concepts[28].id | https://openalex.org/C9555016 |
| concepts[28].level | 2 |
| concepts[28].score | 0.25148463249206543 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q828111 |
| concepts[28].display_name | Zero divisor |
| concepts[29].id | https://openalex.org/C195906000 |
| concepts[29].level | 3 |
| concepts[29].score | 0.2508193850517273 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q1191722 |
| concepts[29].display_name | Matrix exponential |
| keywords[0].id | https://openalex.org/keywords/hypercomplex-number |
| keywords[0].score | 0.7270235419273376 |
| keywords[0].display_name | Hypercomplex number |
| keywords[1].id | https://openalex.org/keywords/exponentiation |
| keywords[1].score | 0.5195799469947815 |
| keywords[1].display_name | Exponentiation |
| keywords[2].id | https://openalex.org/keywords/eulers-formula |
| keywords[2].score | 0.5022621154785156 |
| keywords[2].display_name | Euler's formula |
| keywords[3].id | https://openalex.org/keywords/algebra-over-a-field |
| keywords[3].score | 0.4520670771598816 |
| keywords[3].display_name | Algebra over a field |
| keywords[4].id | https://openalex.org/keywords/logarithm |
| keywords[4].score | 0.45037350058555603 |
| keywords[4].display_name | Logarithm |
| keywords[5].id | https://openalex.org/keywords/quaternion |
| keywords[5].score | 0.44870471954345703 |
| keywords[5].display_name | Quaternion |
| keywords[6].id | https://openalex.org/keywords/exponential-function |
| keywords[6].score | 0.44858941435813904 |
| keywords[6].display_name | Exponential function |
| keywords[7].id | https://openalex.org/keywords/divisor |
| keywords[7].score | 0.4290092885494232 |
| keywords[7].display_name | Divisor (algebraic geometry) |
| keywords[8].id | https://openalex.org/keywords/galois-theory |
| keywords[8].score | 0.3633078336715698 |
| keywords[8].display_name | Galois theory |
| language | en |
| locations[0].id | doi:10.5281/zenodo.17575548 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.17575548 |
| indexed_in | datacite |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | ben abdessalem, maher |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | ben abdessalem, maher |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.17575548 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-11T00:00:00 |
| display_name | A Universal Exponential Law for Real Alternative Algebras and its Geometric Applications |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-10T02:45:41.426853 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.17575548 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.17575548 |
| primary_location.id | doi:10.5281/zenodo.17575548 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.17575548 |
| publication_date | 2025-12-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.$ | 90, 97 |
| abstract_inverted_index.+ | 103, 136 |
| abstract_inverted_index.= | 100, 133 |
| abstract_inverted_index.A | 171 |
| abstract_inverted_index.a | 53, 61, 68, 77, 198, 211, 297, 355 |
| abstract_inverted_index.In | 16 |
| abstract_inverted_index.\[ | 98, 131, 176 |
| abstract_inverted_index.\] | 109, 142, 181 |
| abstract_inverted_index.an | 10, 216 |
| abstract_inverted_index.as | 190, 312 |
| abstract_inverted_index.by | 9, 261, 286 |
| abstract_inverted_index.if | 71, 74 |
| abstract_inverted_index.in | 202, 222, 254, 338, 362 |
| abstract_inverted_index.is | 76, 174, 197 |
| abstract_inverted_index.no | 336 |
| abstract_inverted_index.of | 301, 319 |
| abstract_inverted_index.on | 158 |
| abstract_inverted_index.or | 195, 235 |
| abstract_inverted_index.to | 29, 114, 316 |
| abstract_inverted_index.we | 83, 124, 270 |
| abstract_inverted_index.$A$ | 25, 196 |
| abstract_inverted_index.$i$ | 13 |
| abstract_inverted_index.(as | 201 |
| abstract_inverted_index.A^x | 99, 132 |
| abstract_inverted_index.All | 257 |
| abstract_inverted_index.\in | 95 |
| abstract_inverted_index.all | 115, 167, 223 |
| abstract_inverted_index.and | 3, 18, 38, 72, 112, 120, 146, 163, 186, 225, 231, 251, 344, 366 |
| abstract_inverted_index.are | 259 |
| abstract_inverted_index.for | 166, 219, 279, 306, 359 |
| abstract_inverted_index.has | 67 |
| abstract_inverted_index.its | 187 |
| abstract_inverted_index.map | 33 |
| abstract_inverted_index.may | 34 |
| abstract_inverted_index.not | 27 |
| abstract_inverted_index.the | 31, 85, 126, 154, 159, 183, 203, 205, 233, 277, 280, 317, 349 |
| abstract_inverted_index.x}= | 178 |
| abstract_inverted_index.A^{A | 177 |
| abstract_inverted_index.Both | 150 |
| abstract_inverted_index.This | 46, 214, 352 |
| abstract_inverted_index.When | 81, 122, 193 |
| abstract_inverted_index.code | 267 |
| abstract_inverted_index.fail | 208 |
| abstract_inverted_index.form | 70, 238 |
| abstract_inverted_index.from | 153 |
| abstract_inverted_index.gain | 334 |
| abstract_inverted_index.into | 52 |
| abstract_inverted_index.lack | 43 |
| abstract_inverted_index.lose | 35 |
| abstract_inverted_index.mean | 298 |
| abstract_inverted_index.near | 348 |
| abstract_inverted_index.need | 26, 278 |
| abstract_inverted_index.only | 73 |
| abstract_inverted_index.real | 79, 168 |
| abstract_inverted_index.test | 228 |
| abstract_inverted_index.than | 309 |
| abstract_inverted_index.that | 272, 331 |
| abstract_inverted_index.this | 273, 332 |
| abstract_inverted_index.unit | 12 |
| abstract_inverted_index.when | 239 |
| abstract_inverted_index.with | 57, 89, 265, 324 |
| abstract_inverted_index.zero | 199 |
| abstract_inverted_index.$-1$, | 30 |
| abstract_inverted_index.$2x+$ | 303 |
| abstract_inverted_index.$A^2$ | 75 |
| abstract_inverted_index.$A^x$ | 41 |
| abstract_inverted_index.A^{2} | 93 |
| abstract_inverted_index.Euler | 111 |
| abstract_inverted_index.SciPy | 310 |
| abstract_inverted_index.along | 247 |
| abstract_inverted_index.apply | 232 |
| abstract_inverted_index.often | 42 |
| abstract_inverted_index.other | 147 |
| abstract_inverted_index.paper | 47 |
| abstract_inverted_index.plane | 162 |
| abstract_inverted_index.polar | 288 |
| abstract_inverted_index.roots | 308 |
| abstract_inverted_index.split | 226 |
| abstract_inverted_index.times | 304 |
| abstract_inverted_index.valid | 165 |
| abstract_inverted_index.which | 143 |
| abstract_inverted_index.x/2), | 180 |
| abstract_inverted_index.$A^2$, | 229 |
| abstract_inverted_index.Galois | 245 |
| abstract_inverted_index.\qquad | 106, 139 |
| abstract_inverted_index.admits | 60 |
| abstract_inverted_index.cases. | 192 |
| abstract_inverted_index.claims | 258 |
| abstract_inverted_index.closed | 44, 69, 237 |
| abstract_inverted_index.covers | 144 |
| abstract_inverted_index.faster | 305 |
| abstract_inverted_index.follow | 152 |
| abstract_inverted_index.forms. | 45 |
| abstract_inverted_index.giving | 182, 210 |
| abstract_inverted_index.higher | 255 |
| abstract_inverted_index.incurs | 335 |
| abstract_inverted_index.method | 353 |
| abstract_inverted_index.neural | 368 |
| abstract_inverted_index.obtain | 84, 125 |
| abstract_inverted_index.offers | 354 |
| abstract_inverted_index.power: | 65 |
| abstract_inverted_index.powers | 40 |
| abstract_inverted_index.remain | 164 |
| abstract_inverted_index.square | 28 |
| abstract_inverted_index.yields | 215 |
| abstract_inverted_index.$A^2<0$ | 82 |
| abstract_inverted_index.(boost) | 129 |
| abstract_inverted_index.E^2=-1, | 108 |
| abstract_inverted_index.Euler's | 0 |
| abstract_inverted_index.H^2=+1, | 141 |
| abstract_inverted_index.actions | 246 |
| abstract_inverted_index.against | 292 |
| abstract_inverted_index.divisor | 200 |
| abstract_inverted_index.formula | 5, 88, 130 |
| abstract_inverted_index.include | 242 |
| abstract_inverted_index.inverse | 321 |
| abstract_inverted_index.library | 294 |
| abstract_inverted_index.machine | 341 |
| abstract_inverted_index.nonzero | 78 |
| abstract_inverted_index.penalty | 337 |
| abstract_inverted_index.precise | 212 |
| abstract_inverted_index.proved: | 175 |
| abstract_inverted_index.reveals | 296 |
| abstract_inverted_index.special | 191 |
| abstract_inverted_index.speedup | 300 |
| abstract_inverted_index.unified | 54 |
| abstract_inverted_index.$1$--$A$ | 161 |
| abstract_inverted_index.$A^2>0$, | 123 |
| abstract_inverted_index.Rotation | 311 |
| abstract_inverted_index.allowed. | 240 |
| abstract_inverted_index.approach | 275 |
| abstract_inverted_index.collapse | 172 |
| abstract_inverted_index.computer | 363 |
| abstract_inverted_index.confirms | 330 |
| abstract_inverted_index.describe | 6 |
| abstract_inverted_index.element. | 351 |
| abstract_inverted_index.elements | 24 |
| abstract_inverted_index.elliptic | 86, 234 |
| abstract_inverted_index.exactly, | 209 |
| abstract_inverted_index.existing | 49 |
| abstract_inverted_index.formulas | 51, 151, 207 |
| abstract_inverted_index.function | 284 |
| abstract_inverted_index.however, | 22 |
| abstract_inverted_index.identity | 1, 173, 350 |
| abstract_inverted_index.library, | 314 |
| abstract_inverted_index.meaning, | 37 |
| abstract_inverted_index.methods. | 290 |
| abstract_inverted_index.required | 285 |
| abstract_inverted_index.scalar}. | 80 |
| abstract_inverted_index.standard | 287, 293, 313 |
| abstract_inverted_index.superior | 346 |
| abstract_inverted_index.two-term | 62, 206 |
| abstract_inverted_index.unified, | 356 |
| abstract_inverted_index.$i^2=-1$. | 15 |
| abstract_inverted_index.De~Moivre | 113 |
| abstract_inverted_index.Numerical | 328 |
| abstract_inverted_index.\alpha^x= | 91 |
| abstract_inverted_index.accuracy, | 339 |
| abstract_inverted_index.algebraic | 274, 326 |
| abstract_inverted_index.algebras, | 21, 117 |
| abstract_inverted_index.algebras: | 227 |
| abstract_inverted_index.analogues | 189 |
| abstract_inverted_index.arbitrary | 23, 248 |
| abstract_inverted_index.classical | 184 |
| abstract_inverted_index.expensive | 282 |
| abstract_inverted_index.extending | 110 |
| abstract_inverted_index.framework | 56, 218 |
| abstract_inverted_index.functions | 323 |
| abstract_inverted_index.generated | 8, 160 |
| abstract_inverted_index.geometric | 36, 360 |
| abstract_inverted_index.graphics, | 364 |
| abstract_inverted_index.imaginary | 11, 249 |
| abstract_inverted_index.including | 118 |
| abstract_inverted_index.logarithm | 156 |
| abstract_inverted_index.networks. | 369 |
| abstract_inverted_index.numerical | 263 |
| abstract_inverted_index.operators | 253 |
| abstract_inverted_index.precision | 342 |
| abstract_inverted_index.primitive | 358 |
| abstract_inverted_index.principal | 155 |
| abstract_inverted_index.provided. | 268 |
| abstract_inverted_index.robotics, | 365 |
| abstract_inverted_index.rotations | 7, 361 |
| abstract_inverted_index.stability | 347 |
| abstract_inverted_index.supported | 260 |
| abstract_inverted_index.symmetric | 127 |
| abstract_inverted_index.(rotation) | 87 |
| abstract_inverted_index.Euler-type | 63 |
| abstract_inverted_index.attributed | 315 |
| abstract_inverted_index.cyclotomy, | 244 |
| abstract_inverted_index.eliminates | 276 |
| abstract_inverted_index.exhibiting | 345 |
| abstract_inverted_index.exponents. | 170 |
| abstract_inverted_index.fractional | 39, 64, 169, 220 |
| abstract_inverted_index.hyperbolic | 128, 148, 188, 236 |
| abstract_inverted_index.normalize, | 230 |
| abstract_inverted_index.octonions. | 121 |
| abstract_inverted_index.quaternion | 307 |
| abstract_inverted_index.satisfying | 14 |
| abstract_inverted_index.validation | 329 |
| abstract_inverted_index.Critically, | 269 |
| abstract_inverted_index.De~Moivre's | 4 |
| abstract_inverted_index.\emph{$A^x$ | 66 |
| abstract_inverted_index.\exp(A^2\pi | 179 |
| abstract_inverted_index.algorithmic | 55, 217 |
| abstract_inverted_index.alternative | 19, 116 |
| abstract_inverted_index.associative | 17 |
| abstract_inverted_index.demonstrate | 271 |
| abstract_inverted_index.dimensions. | 256 |
| abstract_inverted_index.directions, | 250 |
| abstract_inverted_index.directions. | 149 |
| abstract_inverted_index.exponential | 32, 50 |
| abstract_inverted_index.independent | 262 |
| abstract_inverted_index.maintaining | 340 |
| abstract_inverted_index.operations. | 327 |
| abstract_inverted_index.performance | 333 |
| abstract_inverted_index.quaternions | 119 |
| abstract_inverted_index.replacement | 318 |
| abstract_inverted_index.sedenions), | 204 |
| abstract_inverted_index.validation, | 264 |
| abstract_inverted_index.x}{2}\Bigr) | 102, 135 |
| abstract_inverted_index.($10^{-16}$) | 343 |
| abstract_inverted_index.Applications | 241 |
| abstract_inverted_index.Benchmarking | 291 |
| abstract_inverted_index.\rvert})^{x} | 94 |
| abstract_inverted_index.advantages.F | 59 |
| abstract_inverted_index.hypercomplex | 20, 243, 367 |
| abstract_inverted_index.obstruction. | 213 |
| abstract_inverted_index.reproducible | 266 |
| abstract_inverted_index.systematizes | 48 |
| abstract_inverted_index.(\sqrt{\lvert | 92 |
| abstract_inverted_index.approximately | 302 |
| abstract_inverted_index.computational | 58, 299 |
| abstract_inverted_index.decomposition | 289 |
| abstract_inverted_index.trigonometric | 322 |
| abstract_inverted_index.exponentiation | 221 |
| abstract_inverted_index.rotation/boost | 252 |
| abstract_inverted_index.transcendental | 320 |
| abstract_inverted_index.Cayley--Dickson | 224 |
| abstract_inverted_index.\mathbb{R}_{>0} | 96 |
| abstract_inverted_index.computationally | 281 |
| abstract_inverted_index.implementations | 295 |
| abstract_inverted_index.$\log(A)=A\pi/2$ | 157 |
| abstract_inverted_index.$i^i=e^{-\pi/2}$ | 185 |
| abstract_inverted_index.\texttt{arctan2} | 283 |
| abstract_inverted_index.high-performance | 357 |
| abstract_inverted_index.split-quaternions | 145 |
| abstract_inverted_index.x}{2}\Bigr)\right], | 105, 138 |
| abstract_inverted_index.hardware-accelerated | 325 |
| abstract_inverted_index.$A^2\notin\mathbb{R}$ | 194 |
| abstract_inverted_index.E\sin\Bigl(\tfrac{\pi | 104 |
| abstract_inverted_index.H\sinh\Bigl(\tfrac{\pi | 137 |
| abstract_inverted_index.H=\frac{A}{\sqrt{A^2}},\; | 140 |
| abstract_inverted_index.E=\frac{A}{\sqrt{-A^2}},\; | 107 |
| abstract_inverted_index.$e^{i\theta}=\cos\theta+i\sin\theta$ | 2 |
| abstract_inverted_index.\alpha^x\!\left[\cos\Bigl(\tfrac{\pi | 101 |
| abstract_inverted_index.\alpha^x\!\left[\cosh\Bigl(\tfrac{\pi | 134 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |