A Universal Framework for Large-Scale Multi-Objective Optimization Based on Particle Drift and Diffusion Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2507.05847
Large-scale multi-objective optimization poses challenges to existing evolutionary algorithms in maintaining the performances of convergence and diversity because of high dimensional decision variables. Inspired by the motion of particles in physics, we propose a universal framework for large-scale multi-objective optimization based on particle drift and diffusion to solve these challenges in this paper. This framework innovatively divides the optimization process into three sub-stages: two coarse-tuning sub-stages and one fine-tuning sub-stage. Different strategies of drift-diffusion operations are performed on the guiding solutions according to the current sub-stage, ingeniously simulating the movement of particles under diverse environmental conditions. Finally, representative evolutionary algorithms are embedded into the proposed framework, and their effectiveness are evaluated through comparative experiments on various large-scale multi-objective problems with 1000 to 5000 decision variables. Moreover, comparative algorithms are conducted on neural network training problems to validate the effectiveness of the proposed framework in the practical problems. The experimental results demonstrate that the framework proposed in this paper significantly enhances the performance of convergence and diversity of MOEAs, and improves the computational efficiency of algorithms in solving large-scale multi-objective optimization problems.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.05847
- https://arxiv.org/pdf/2507.05847
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414690322
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414690322Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2507.05847Digital Object Identifier
- Title
-
A Universal Framework for Large-Scale Multi-Objective Optimization Based on Particle Drift and DiffusionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-08Full publication date if available
- Authors
-
Jiacheng Li, Min-Rong Chen, Guo‐Qiang Zeng, Weng, Jian, Man Wang, J. MaiList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.05847Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.05847Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.05847Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414690322 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2507.05847 |
| ids.doi | https://doi.org/10.48550/arxiv.2507.05847 |
| ids.openalex | https://openalex.org/W4414690322 |
| fwci | |
| type | preprint |
| title | A Universal Framework for Large-Scale Multi-Objective Optimization Based on Particle Drift and Diffusion |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10848 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.98580002784729 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Advanced Multi-Objective Optimization Algorithms |
| topics[1].id | https://openalex.org/T10100 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9003000259399414 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Metaheuristic Optimization Algorithms Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.05847 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.05847 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.05847 |
| locations[1].id | doi:10.48550/arxiv.2507.05847 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2507.05847 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5070642046 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4884-9786 |
| authorships[0].author.display_name | Jiacheng Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Jia-Cheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5079910881 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9817-0267 |
| authorships[1].author.display_name | Min-Rong Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, Min-Rong |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5046775963 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7453-7420 |
| authorships[2].author.display_name | Guo‐Qiang Zeng |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zeng, Guo-Qiang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4067-8230 |
| authorships[3].author.display_name | |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Weng, Jian |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5115601877 |
| authorships[4].author.orcid | https://orcid.org/0009-0000-9119-6149 |
| authorships[4].author.display_name | Man Wang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wang, Man |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5107721723 |
| authorships[5].author.orcid | https://orcid.org/0009-0001-8393-7426 |
| authorships[5].author.display_name | J. Mai |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Mai, Jia-Lin |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.05847 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Universal Framework for Large-Scale Multi-Objective Optimization Based on Particle Drift and Diffusion |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10848 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.98580002784729 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Advanced Multi-Objective Optimization Algorithms |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.05847 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.05847 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.05847 |
| primary_location.id | pmh:oai:arXiv.org:2507.05847 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.05847 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.05847 |
| publication_date | 2025-07-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 33 |
| abstract_inverted_index.by | 24 |
| abstract_inverted_index.in | 9, 29, 50, 143, 155, 175 |
| abstract_inverted_index.of | 13, 18, 27, 72, 90, 139, 162, 166, 173 |
| abstract_inverted_index.on | 41, 77, 114, 130 |
| abstract_inverted_index.to | 5, 46, 82, 121, 135 |
| abstract_inverted_index.we | 31 |
| abstract_inverted_index.The | 147 |
| abstract_inverted_index.and | 15, 44, 66, 106, 164, 168 |
| abstract_inverted_index.are | 75, 100, 109, 128 |
| abstract_inverted_index.for | 36 |
| abstract_inverted_index.one | 67 |
| abstract_inverted_index.the | 11, 25, 57, 78, 83, 88, 103, 137, 140, 144, 152, 160, 170 |
| abstract_inverted_index.two | 63 |
| abstract_inverted_index.1000 | 120 |
| abstract_inverted_index.5000 | 122 |
| abstract_inverted_index.This | 53 |
| abstract_inverted_index.high | 19 |
| abstract_inverted_index.into | 60, 102 |
| abstract_inverted_index.that | 151 |
| abstract_inverted_index.this | 51, 156 |
| abstract_inverted_index.with | 119 |
| abstract_inverted_index.based | 40 |
| abstract_inverted_index.drift | 43 |
| abstract_inverted_index.paper | 157 |
| abstract_inverted_index.poses | 3 |
| abstract_inverted_index.solve | 47 |
| abstract_inverted_index.their | 107 |
| abstract_inverted_index.these | 48 |
| abstract_inverted_index.three | 61 |
| abstract_inverted_index.under | 92 |
| abstract_inverted_index.MOEAs, | 167 |
| abstract_inverted_index.motion | 26 |
| abstract_inverted_index.neural | 131 |
| abstract_inverted_index.paper. | 52 |
| abstract_inverted_index.because | 17 |
| abstract_inverted_index.current | 84 |
| abstract_inverted_index.diverse | 93 |
| abstract_inverted_index.divides | 56 |
| abstract_inverted_index.guiding | 79 |
| abstract_inverted_index.network | 132 |
| abstract_inverted_index.process | 59 |
| abstract_inverted_index.propose | 32 |
| abstract_inverted_index.results | 149 |
| abstract_inverted_index.solving | 176 |
| abstract_inverted_index.through | 111 |
| abstract_inverted_index.various | 115 |
| abstract_inverted_index.Finally, | 96 |
| abstract_inverted_index.Inspired | 23 |
| abstract_inverted_index.decision | 21, 123 |
| abstract_inverted_index.embedded | 101 |
| abstract_inverted_index.enhances | 159 |
| abstract_inverted_index.existing | 6 |
| abstract_inverted_index.improves | 169 |
| abstract_inverted_index.movement | 89 |
| abstract_inverted_index.particle | 42 |
| abstract_inverted_index.physics, | 30 |
| abstract_inverted_index.problems | 118, 134 |
| abstract_inverted_index.proposed | 104, 141, 154 |
| abstract_inverted_index.training | 133 |
| abstract_inverted_index.validate | 136 |
| abstract_inverted_index.Different | 70 |
| abstract_inverted_index.Moreover, | 125 |
| abstract_inverted_index.according | 81 |
| abstract_inverted_index.conducted | 129 |
| abstract_inverted_index.diffusion | 45 |
| abstract_inverted_index.diversity | 16, 165 |
| abstract_inverted_index.evaluated | 110 |
| abstract_inverted_index.framework | 35, 54, 142, 153 |
| abstract_inverted_index.particles | 28, 91 |
| abstract_inverted_index.performed | 76 |
| abstract_inverted_index.practical | 145 |
| abstract_inverted_index.problems. | 146, 180 |
| abstract_inverted_index.solutions | 80 |
| abstract_inverted_index.universal | 34 |
| abstract_inverted_index.algorithms | 8, 99, 127, 174 |
| abstract_inverted_index.challenges | 4, 49 |
| abstract_inverted_index.efficiency | 172 |
| abstract_inverted_index.framework, | 105 |
| abstract_inverted_index.operations | 74 |
| abstract_inverted_index.simulating | 87 |
| abstract_inverted_index.strategies | 71 |
| abstract_inverted_index.sub-stage, | 85 |
| abstract_inverted_index.sub-stage. | 69 |
| abstract_inverted_index.sub-stages | 65 |
| abstract_inverted_index.variables. | 22, 124 |
| abstract_inverted_index.Large-scale | 0 |
| abstract_inverted_index.comparative | 112, 126 |
| abstract_inverted_index.conditions. | 95 |
| abstract_inverted_index.convergence | 14, 163 |
| abstract_inverted_index.demonstrate | 150 |
| abstract_inverted_index.dimensional | 20 |
| abstract_inverted_index.experiments | 113 |
| abstract_inverted_index.fine-tuning | 68 |
| abstract_inverted_index.ingeniously | 86 |
| abstract_inverted_index.large-scale | 37, 116, 177 |
| abstract_inverted_index.maintaining | 10 |
| abstract_inverted_index.performance | 161 |
| abstract_inverted_index.sub-stages: | 62 |
| abstract_inverted_index.evolutionary | 7, 98 |
| abstract_inverted_index.experimental | 148 |
| abstract_inverted_index.innovatively | 55 |
| abstract_inverted_index.optimization | 2, 39, 58, 179 |
| abstract_inverted_index.performances | 12 |
| abstract_inverted_index.coarse-tuning | 64 |
| abstract_inverted_index.computational | 171 |
| abstract_inverted_index.effectiveness | 108, 138 |
| abstract_inverted_index.environmental | 94 |
| abstract_inverted_index.significantly | 158 |
| abstract_inverted_index.representative | 97 |
| abstract_inverted_index.drift-diffusion | 73 |
| abstract_inverted_index.multi-objective | 1, 38, 117, 178 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |