A Universal Intelligent Classification Algorithm for Pathological Images Based on Sliding Window Attention Mechanism Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.47852/bonviewmedin52025163
The pathological diagnosis is the gold standard for qualitative analysis of tumors. Due to the difficulty in extracting complete features from high-resolution whole-slice pathological images, the generality and accuracy of traditional deep learning classification algorithms are limited. This paper proposes an intelligent classification algorithm by combining convolutional neural networks (CNN) and Transformer for pathological images. Firstly, the local and global features of pathological images are extracted using the designed CNN and Transformer hybrid network architecture Furthermore, the Mish activation function is introduced to improve the nonlinear expression ability of the feature extraction network. Finally, by stacking multiple convolutional blocks and residual attention blocks to increase model depth, the classification accuracy is improved. The main contribution lies in the design of a residual module that introduces a sliding window multihead attention mechanism, which enhances the algorithm’s ability to extract contextual information. While effectively reducing computational complexity, it also improves classification accuracy. Experimental results show that the proposed algorithm attains accuracies of 0.987 and 0.947 for classifying benign and malignant lung and breast pathological images, respectively. The algorithm also achieves an accuracy of 0.932 in classifying benign, adenocarcinoma, and squamous cell carcinoma images and 0.841 in distinguishing benign and four subtypes of breast cancer. Moreover, it achieves an accuracy of 0.976 on a private dataset for breast cancer tissue pathological grading, which shows that the algorithm is universal and feasible in multidisease multiclassification tasks and clinical applications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.47852/bonviewmedin52025163
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409406717
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409406717Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.47852/bonviewmedin52025163Digital Object Identifier
- Title
-
A Universal Intelligent Classification Algorithm for Pathological Images Based on Sliding Window Attention MechanismWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Huiqin Jiang, Zhaohui Tong, Xiaonan Yang, Fangjie Zhao, Jinhong Tan, Xing Dong, Željko Ban, Xianxu Zeng, Xin Zhao, Ling MaList of authors in order
- Landing page
-
https://doi.org/10.47852/bonviewmedin52025163Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.47852/bonviewmedin52025163Direct OA link when available
- Concepts
-
Sliding window protocol, Mechanism (biology), Window (computing), Computer science, Artificial intelligence, Pathological, Algorithm, Pattern recognition (psychology), Medicine, Pathology, Physics, Quantum mechanics, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409406717 |
|---|---|
| doi | https://doi.org/10.47852/bonviewmedin52025163 |
| ids.doi | https://doi.org/10.47852/bonviewmedin52025163 |
| ids.openalex | https://openalex.org/W4409406717 |
| fwci | 0.0 |
| type | article |
| title | A Universal Intelligent Classification Algorithm for Pathological Images Based on Sliding Window Attention Mechanism |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12702 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.38769999146461487 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2808 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Brain Tumor Detection and Classification |
| topics[1].id | https://openalex.org/T14510 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.38350000977516174 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Medical Imaging and Analysis |
| topics[2].id | https://openalex.org/T13731 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.3804999887943268 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3322 |
| topics[2].subfield.display_name | Urban Studies |
| topics[2].display_name | Advanced Computing and Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C102392041 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8171088695526123 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q592860 |
| concepts[0].display_name | Sliding window protocol |
| concepts[1].id | https://openalex.org/C89611455 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7660993933677673 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6804646 |
| concepts[1].display_name | Mechanism (biology) |
| concepts[2].id | https://openalex.org/C2778751112 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6898131370544434 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q835016 |
| concepts[2].display_name | Window (computing) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5757105350494385 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5128726959228516 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C207886595 |
| concepts[5].level | 2 |
| concepts[5].score | 0.44329091906547546 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1456138 |
| concepts[5].display_name | Pathological |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4355728030204773 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.40331852436065674 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C71924100 |
| concepts[8].level | 0 |
| concepts[8].score | 0.10812535881996155 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[8].display_name | Medicine |
| concepts[9].id | https://openalex.org/C142724271 |
| concepts[9].level | 1 |
| concepts[9].score | 0.06754308938980103 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[9].display_name | Pathology |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0482388436794281 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C62520636 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[11].display_name | Quantum mechanics |
| concepts[12].id | https://openalex.org/C111919701 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[12].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/sliding-window-protocol |
| keywords[0].score | 0.8171088695526123 |
| keywords[0].display_name | Sliding window protocol |
| keywords[1].id | https://openalex.org/keywords/mechanism |
| keywords[1].score | 0.7660993933677673 |
| keywords[1].display_name | Mechanism (biology) |
| keywords[2].id | https://openalex.org/keywords/window |
| keywords[2].score | 0.6898131370544434 |
| keywords[2].display_name | Window (computing) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5757105350494385 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5128726959228516 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/pathological |
| keywords[5].score | 0.44329091906547546 |
| keywords[5].display_name | Pathological |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.4355728030204773 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.40331852436065674 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/medicine |
| keywords[8].score | 0.10812535881996155 |
| keywords[8].display_name | Medicine |
| keywords[9].id | https://openalex.org/keywords/pathology |
| keywords[9].score | 0.06754308938980103 |
| keywords[9].display_name | Pathology |
| keywords[10].id | https://openalex.org/keywords/physics |
| keywords[10].score | 0.0482388436794281 |
| keywords[10].display_name | Physics |
| language | en |
| locations[0].id | doi:10.47852/bonviewmedin52025163 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S5407045031 |
| locations[0].source.issn | 3029-1321 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 3029-1321 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Medinformatics |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Medinformatics |
| locations[0].landing_page_url | https://doi.org/10.47852/bonviewmedin52025163 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5032769891 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3316-877X |
| authorships[0].author.display_name | Huiqin Jiang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huiqin Jiang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101484161 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5341-6857 |
| authorships[1].author.display_name | Zhaohui Tong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhiheng Tong |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5032420193 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3353-6982 |
| authorships[2].author.display_name | Xiaonan Yang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiaonan Yang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5009565020 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Fangjie Zhao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Fangjie Zhao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101498056 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4213-961X |
| authorships[4].author.display_name | Jinhong Tan |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jinhong Tan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5058228940 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Xing Dong |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xing Dong |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5101796455 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1712-0597 |
| authorships[6].author.display_name | Željko Ban |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Zhenying Ban |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5103909184 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-0457-9908 |
| authorships[7].author.display_name | Xianxu Zeng |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Xianxu Zeng |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5063470016 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-9369-714X |
| authorships[8].author.display_name | Xin Zhao |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Xin Zhao |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5036882508 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-3424-3540 |
| authorships[9].author.display_name | Ling Ma |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Ling Ma |
| authorships[9].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.47852/bonviewmedin52025163 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Universal Intelligent Classification Algorithm for Pathological Images Based on Sliding Window Attention Mechanism |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12702 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.38769999146461487 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2808 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Brain Tumor Detection and Classification |
| related_works | https://openalex.org/W2365243064, https://openalex.org/W2390901981, https://openalex.org/W2109115373, https://openalex.org/W2353818951, https://openalex.org/W4406506753, https://openalex.org/W1605879311, https://openalex.org/W2382997850, https://openalex.org/W2390968135, https://openalex.org/W2386699790, https://openalex.org/W3014558862 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.47852/bonviewmedin52025163 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S5407045031 |
| best_oa_location.source.issn | 3029-1321 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 3029-1321 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Medinformatics |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Medinformatics |
| best_oa_location.landing_page_url | https://doi.org/10.47852/bonviewmedin52025163 |
| primary_location.id | doi:10.47852/bonviewmedin52025163 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S5407045031 |
| primary_location.source.issn | 3029-1321 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 3029-1321 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Medinformatics |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Medinformatics |
| primary_location.landing_page_url | https://doi.org/10.47852/bonviewmedin52025163 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 120, 125, 210 |
| abstract_inverted_index.an | 40, 178, 205 |
| abstract_inverted_index.by | 44, 94 |
| abstract_inverted_index.in | 16, 116, 182, 193, 228 |
| abstract_inverted_index.is | 3, 80, 110, 224 |
| abstract_inverted_index.it | 145, 203 |
| abstract_inverted_index.of | 10, 29, 61, 88, 119, 159, 180, 199, 207 |
| abstract_inverted_index.on | 209 |
| abstract_inverted_index.to | 13, 82, 103, 136 |
| abstract_inverted_index.CNN | 69 |
| abstract_inverted_index.Due | 12 |
| abstract_inverted_index.The | 0, 112, 174 |
| abstract_inverted_index.and | 27, 50, 58, 70, 99, 161, 166, 169, 186, 191, 196, 226, 232 |
| abstract_inverted_index.are | 35, 64 |
| abstract_inverted_index.for | 7, 52, 163, 213 |
| abstract_inverted_index.the | 4, 14, 25, 56, 67, 76, 84, 89, 107, 117, 133, 154, 222 |
| abstract_inverted_index.Mish | 77 |
| abstract_inverted_index.This | 37 |
| abstract_inverted_index.also | 146, 176 |
| abstract_inverted_index.cell | 188 |
| abstract_inverted_index.deep | 31 |
| abstract_inverted_index.four | 197 |
| abstract_inverted_index.from | 20 |
| abstract_inverted_index.gold | 5 |
| abstract_inverted_index.lies | 115 |
| abstract_inverted_index.lung | 168 |
| abstract_inverted_index.main | 113 |
| abstract_inverted_index.show | 152 |
| abstract_inverted_index.that | 123, 153, 221 |
| abstract_inverted_index.(CNN) | 49 |
| abstract_inverted_index.0.841 | 192 |
| abstract_inverted_index.0.932 | 181 |
| abstract_inverted_index.0.947 | 162 |
| abstract_inverted_index.0.976 | 208 |
| abstract_inverted_index.0.987 | 160 |
| abstract_inverted_index.While | 140 |
| abstract_inverted_index.local | 57 |
| abstract_inverted_index.model | 105 |
| abstract_inverted_index.paper | 38 |
| abstract_inverted_index.shows | 220 |
| abstract_inverted_index.tasks | 231 |
| abstract_inverted_index.using | 66 |
| abstract_inverted_index.which | 131, 219 |
| abstract_inverted_index.benign | 165, 195 |
| abstract_inverted_index.blocks | 98, 102 |
| abstract_inverted_index.breast | 170, 200, 214 |
| abstract_inverted_index.cancer | 215 |
| abstract_inverted_index.depth, | 106 |
| abstract_inverted_index.design | 118 |
| abstract_inverted_index.global | 59 |
| abstract_inverted_index.hybrid | 72 |
| abstract_inverted_index.images | 63, 190 |
| abstract_inverted_index.module | 122 |
| abstract_inverted_index.neural | 47 |
| abstract_inverted_index.tissue | 216 |
| abstract_inverted_index.window | 127 |
| abstract_inverted_index.ability | 87, 135 |
| abstract_inverted_index.attains | 157 |
| abstract_inverted_index.benign, | 184 |
| abstract_inverted_index.cancer. | 201 |
| abstract_inverted_index.dataset | 212 |
| abstract_inverted_index.extract | 137 |
| abstract_inverted_index.feature | 90 |
| abstract_inverted_index.images, | 24, 172 |
| abstract_inverted_index.images. | 54 |
| abstract_inverted_index.improve | 83 |
| abstract_inverted_index.network | 73 |
| abstract_inverted_index.private | 211 |
| abstract_inverted_index.results | 151 |
| abstract_inverted_index.sliding | 126 |
| abstract_inverted_index.tumors. | 11 |
| abstract_inverted_index.Finally, | 93 |
| abstract_inverted_index.Firstly, | 55 |
| abstract_inverted_index.accuracy | 28, 109, 179, 206 |
| abstract_inverted_index.achieves | 177, 204 |
| abstract_inverted_index.analysis | 9 |
| abstract_inverted_index.clinical | 233 |
| abstract_inverted_index.complete | 18 |
| abstract_inverted_index.designed | 68 |
| abstract_inverted_index.enhances | 132 |
| abstract_inverted_index.feasible | 227 |
| abstract_inverted_index.features | 19, 60 |
| abstract_inverted_index.function | 79 |
| abstract_inverted_index.grading, | 218 |
| abstract_inverted_index.improves | 147 |
| abstract_inverted_index.increase | 104 |
| abstract_inverted_index.learning | 32 |
| abstract_inverted_index.limited. | 36 |
| abstract_inverted_index.multiple | 96 |
| abstract_inverted_index.network. | 92 |
| abstract_inverted_index.networks | 48 |
| abstract_inverted_index.proposed | 155 |
| abstract_inverted_index.proposes | 39 |
| abstract_inverted_index.reducing | 142 |
| abstract_inverted_index.residual | 100, 121 |
| abstract_inverted_index.squamous | 187 |
| abstract_inverted_index.stacking | 95 |
| abstract_inverted_index.standard | 6 |
| abstract_inverted_index.subtypes | 198 |
| abstract_inverted_index.Moreover, | 202 |
| abstract_inverted_index.accuracy. | 149 |
| abstract_inverted_index.algorithm | 43, 156, 175, 223 |
| abstract_inverted_index.attention | 101, 129 |
| abstract_inverted_index.carcinoma | 189 |
| abstract_inverted_index.combining | 45 |
| abstract_inverted_index.diagnosis | 2 |
| abstract_inverted_index.extracted | 65 |
| abstract_inverted_index.improved. | 111 |
| abstract_inverted_index.malignant | 167 |
| abstract_inverted_index.multihead | 128 |
| abstract_inverted_index.nonlinear | 85 |
| abstract_inverted_index.universal | 225 |
| abstract_inverted_index.accuracies | 158 |
| abstract_inverted_index.activation | 78 |
| abstract_inverted_index.algorithms | 34 |
| abstract_inverted_index.contextual | 138 |
| abstract_inverted_index.difficulty | 15 |
| abstract_inverted_index.expression | 86 |
| abstract_inverted_index.extracting | 17 |
| abstract_inverted_index.extraction | 91 |
| abstract_inverted_index.generality | 26 |
| abstract_inverted_index.introduced | 81 |
| abstract_inverted_index.introduces | 124 |
| abstract_inverted_index.mechanism, | 130 |
| abstract_inverted_index.Transformer | 51, 71 |
| abstract_inverted_index.classifying | 164, 183 |
| abstract_inverted_index.complexity, | 144 |
| abstract_inverted_index.effectively | 141 |
| abstract_inverted_index.intelligent | 41 |
| abstract_inverted_index.qualitative | 8 |
| abstract_inverted_index.traditional | 30 |
| abstract_inverted_index.whole-slice | 22 |
| abstract_inverted_index.Experimental | 150 |
| abstract_inverted_index.Furthermore, | 75 |
| abstract_inverted_index.architecture | 74 |
| abstract_inverted_index.contribution | 114 |
| abstract_inverted_index.information. | 139 |
| abstract_inverted_index.multidisease | 229 |
| abstract_inverted_index.pathological | 1, 23, 53, 62, 171, 217 |
| abstract_inverted_index.algorithm’s | 134 |
| abstract_inverted_index.applications. | 234 |
| abstract_inverted_index.computational | 143 |
| abstract_inverted_index.convolutional | 46, 97 |
| abstract_inverted_index.respectively. | 173 |
| abstract_inverted_index.classification | 33, 42, 108, 148 |
| abstract_inverted_index.distinguishing | 194 |
| abstract_inverted_index.adenocarcinoma, | 185 |
| abstract_inverted_index.high-resolution | 21 |
| abstract_inverted_index.multiclassification | 230 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile.value | 0.15906433 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |