A universal surface functionalization technique to chemically enhance live microbial cells Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1101/2025.09.16.676682
Microbial surface functionalization is a powerful strategy for endowing microbes with novel, non-genetic functions. However, existing methods are often species-specific, limited in scope, and compromise cell viability. Here, we present a universal and modular platform for high-density, reproducible surface functionalization across diverse microbial species—including Gram-positive, Gram-negative, aerobic, and anaerobic bacteria—using multiple molecular classes such as fluorophores, enzymes, and nucleic acids. Our method preserves cell viability, and achieves 50x higher functionalization efficiency than previous methods with a standardized protocol applicable to any azide-containing molecule. Applications of the method show reproducible and tunable phenotypic outcomes at the single-cell level: fluorophore labeling yielded adjustable fluorescence, β-lactamase conferred scalable antibiotic resistance, and DNA coatings modulated adhesion and aggregation. This platform provides quantitative, non-genetic control over microbial phenotypes and complements genetic engineering approaches. It enables new possibilities for microbial design in biotechnology, medicine, and environmental applications where genetic modification is impractical or undesirable.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1101/2025.09.16.676682
- https://www.biorxiv.org/content/biorxiv/early/2025/09/17/2025.09.16.676682.full.pdf
- OA Status
- green
- References
- 50
- OpenAlex ID
- https://openalex.org/W4414306080
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414306080Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2025.09.16.676682Digital Object Identifier
- Title
-
A universal surface functionalization technique to chemically enhance live microbial cellsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-17Full publication date if available
- Authors
-
Gabriel T Vercelli, Xingcheng Zhou, Stefany Moreno-Gámez, Rachel Gregor, Jonasz Słomka, Akorfa Dagadu, Ariel L. Furst, Otto X. CorderoList of authors in order
- Landing page
-
https://doi.org/10.1101/2025.09.16.676682Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2025/09/17/2025.09.16.676682.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2025/09/17/2025.09.16.676682.full.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
50Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414306080 |
|---|---|
| doi | https://doi.org/10.1101/2025.09.16.676682 |
| ids.doi | https://doi.org/10.1101/2025.09.16.676682 |
| ids.openalex | https://openalex.org/W4414306080 |
| fwci | 0.0 |
| type | article |
| title | A universal surface functionalization technique to chemically enhance live microbial cells |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12224 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9585000276565552 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Nanofabrication and Lithography Techniques |
| topics[1].id | https://openalex.org/T10859 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9577999711036682 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2508 |
| topics[1].subfield.display_name | Surfaces, Coatings and Films |
| topics[1].display_name | Polymer Surface Interaction Studies |
| topics[2].id | https://openalex.org/T11190 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9516000151634216 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | 3D Printing in Biomedical Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.1101/2025.09.16.676682 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/09/17/2025.09.16.676682.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2025.09.16.676682 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5063000215 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7198-2991 |
| authorships[0].author.display_name | Gabriel T Vercelli |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gabriel T Vercelli |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5064461407 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7573-0564 |
| authorships[1].author.display_name | Xingcheng Zhou |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xingcheng Zhou |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5080740174 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6408-9057 |
| authorships[2].author.display_name | Stefany Moreno-Gámez |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Stefany Moreno-Gamez |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5028203074 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4071-9573 |
| authorships[3].author.display_name | Rachel Gregor |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Rachel Gregor |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5087149282 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7097-5810 |
| authorships[4].author.display_name | Jonasz Słomka |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jonasz Slomka |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5119660805 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Akorfa Dagadu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Akorfa Dagadu |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5018653043 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-9583-9703 |
| authorships[6].author.display_name | Ariel L. Furst |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Ariel L Furst |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5085226897 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-2695-270X |
| authorships[7].author.display_name | Otto X. Cordero |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Otto X Cordero |
| authorships[7].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2025/09/17/2025.09.16.676682.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A universal surface functionalization technique to chemically enhance live microbial cells |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12224 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9585000276565552 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Nanofabrication and Lithography Techniques |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2025.09.16.676682 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/09/17/2025.09.16.676682.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2025.09.16.676682 |
| primary_location.id | doi:10.1101/2025.09.16.676682 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/09/17/2025.09.16.676682.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2025.09.16.676682 |
| publication_date | 2025-09-17 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4284991297, https://openalex.org/W2992441772, https://openalex.org/W4386871004, https://openalex.org/W4394692419, https://openalex.org/W3025382019, https://openalex.org/W4293230714, https://openalex.org/W4224267221, https://openalex.org/W3129281642, https://openalex.org/W3018198720, https://openalex.org/W3011431481, https://openalex.org/W2982312328, https://openalex.org/W4310275855, https://openalex.org/W2810131887, https://openalex.org/W4291021140, https://openalex.org/W3038532033, https://openalex.org/W2883057110, https://openalex.org/W2944013917, https://openalex.org/W4382502090, https://openalex.org/W2123917362, https://openalex.org/W4318620342, https://openalex.org/W4387528614, https://openalex.org/W3036318869, https://openalex.org/W4318755070, https://openalex.org/W2024990286, https://openalex.org/W2766491031, https://openalex.org/W3178508395, https://openalex.org/W3117668926, https://openalex.org/W4205567479, https://openalex.org/W2761425229, https://openalex.org/W4397032465, https://openalex.org/W2035625594, https://openalex.org/W4366083253, https://openalex.org/W4232873484, https://openalex.org/W2068711133, https://openalex.org/W2151709132, https://openalex.org/W2109256040, https://openalex.org/W2426506141, https://openalex.org/W2343597029, https://openalex.org/W1993016234, https://openalex.org/W4411258845, https://openalex.org/W2079342481, https://openalex.org/W3133974828, https://openalex.org/W2518725076, https://openalex.org/W2142087770, https://openalex.org/W2081444615, https://openalex.org/W2134091331, https://openalex.org/W3174485034, https://openalex.org/W2122394616, https://openalex.org/W1986219050, https://openalex.org/W2975634117 |
| referenced_works_count | 50 |
| abstract_inverted_index.a | 5, 31, 76 |
| abstract_inverted_index.It | 129 |
| abstract_inverted_index.as | 55 |
| abstract_inverted_index.at | 94 |
| abstract_inverted_index.in | 22, 136 |
| abstract_inverted_index.is | 4, 145 |
| abstract_inverted_index.of | 85 |
| abstract_inverted_index.or | 147 |
| abstract_inverted_index.to | 80 |
| abstract_inverted_index.we | 29 |
| abstract_inverted_index.50x | 68 |
| abstract_inverted_index.DNA | 109 |
| abstract_inverted_index.Our | 61 |
| abstract_inverted_index.and | 24, 33, 48, 58, 66, 90, 108, 113, 124, 139 |
| abstract_inverted_index.any | 81 |
| abstract_inverted_index.are | 18 |
| abstract_inverted_index.for | 8, 36, 133 |
| abstract_inverted_index.new | 131 |
| abstract_inverted_index.the | 86, 95 |
| abstract_inverted_index.This | 115 |
| abstract_inverted_index.cell | 26, 64 |
| abstract_inverted_index.over | 121 |
| abstract_inverted_index.show | 88 |
| abstract_inverted_index.such | 54 |
| abstract_inverted_index.than | 72 |
| abstract_inverted_index.with | 11, 75 |
| abstract_inverted_index.Here, | 28 |
| abstract_inverted_index.often | 19 |
| abstract_inverted_index.where | 142 |
| abstract_inverted_index.acids. | 60 |
| abstract_inverted_index.across | 41 |
| abstract_inverted_index.design | 135 |
| abstract_inverted_index.higher | 69 |
| abstract_inverted_index.level: | 97 |
| abstract_inverted_index.method | 62, 87 |
| abstract_inverted_index.novel, | 12 |
| abstract_inverted_index.scope, | 23 |
| abstract_inverted_index.classes | 53 |
| abstract_inverted_index.control | 120 |
| abstract_inverted_index.diverse | 42 |
| abstract_inverted_index.enables | 130 |
| abstract_inverted_index.genetic | 126, 143 |
| abstract_inverted_index.limited | 21 |
| abstract_inverted_index.methods | 17, 74 |
| abstract_inverted_index.modular | 34 |
| abstract_inverted_index.nucleic | 59 |
| abstract_inverted_index.present | 30 |
| abstract_inverted_index.surface | 2, 39 |
| abstract_inverted_index.tunable | 91 |
| abstract_inverted_index.yielded | 100 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 15 |
| abstract_inverted_index.achieves | 67 |
| abstract_inverted_index.adhesion | 112 |
| abstract_inverted_index.aerobic, | 47 |
| abstract_inverted_index.coatings | 110 |
| abstract_inverted_index.endowing | 9 |
| abstract_inverted_index.enzymes, | 57 |
| abstract_inverted_index.existing | 16 |
| abstract_inverted_index.labeling | 99 |
| abstract_inverted_index.microbes | 10 |
| abstract_inverted_index.multiple | 51 |
| abstract_inverted_index.outcomes | 93 |
| abstract_inverted_index.platform | 35, 116 |
| abstract_inverted_index.powerful | 6 |
| abstract_inverted_index.previous | 73 |
| abstract_inverted_index.protocol | 78 |
| abstract_inverted_index.provides | 117 |
| abstract_inverted_index.scalable | 105 |
| abstract_inverted_index.strategy | 7 |
| abstract_inverted_index.Microbial | 1 |
| abstract_inverted_index.anaerobic | 49 |
| abstract_inverted_index.conferred | 104 |
| abstract_inverted_index.medicine, | 138 |
| abstract_inverted_index.microbial | 43, 122, 134 |
| abstract_inverted_index.modulated | 111 |
| abstract_inverted_index.molecular | 52 |
| abstract_inverted_index.molecule. | 83 |
| abstract_inverted_index.preserves | 63 |
| abstract_inverted_index.universal | 32 |
| abstract_inverted_index.adjustable | 101 |
| abstract_inverted_index.antibiotic | 106 |
| abstract_inverted_index.applicable | 79 |
| abstract_inverted_index.compromise | 25 |
| abstract_inverted_index.efficiency | 71 |
| abstract_inverted_index.functions. | 14 |
| abstract_inverted_index.phenotypes | 123 |
| abstract_inverted_index.phenotypic | 92 |
| abstract_inverted_index.viability, | 65 |
| abstract_inverted_index.viability. | 27 |
| abstract_inverted_index.approaches. | 128 |
| abstract_inverted_index.complements | 125 |
| abstract_inverted_index.engineering | 127 |
| abstract_inverted_index.fluorophore | 98 |
| abstract_inverted_index.impractical | 146 |
| abstract_inverted_index.non-genetic | 13, 119 |
| abstract_inverted_index.resistance, | 107 |
| abstract_inverted_index.single-cell | 96 |
| abstract_inverted_index.Applications | 84 |
| abstract_inverted_index.aggregation. | 114 |
| abstract_inverted_index.applications | 141 |
| abstract_inverted_index.modification | 144 |
| abstract_inverted_index.reproducible | 38, 89 |
| abstract_inverted_index.standardized | 77 |
| abstract_inverted_index.undesirable. | 148 |
| abstract_inverted_index.β-lactamase | 103 |
| abstract_inverted_index.environmental | 140 |
| abstract_inverted_index.fluorescence, | 102 |
| abstract_inverted_index.fluorophores, | 56 |
| abstract_inverted_index.high-density, | 37 |
| abstract_inverted_index.possibilities | 132 |
| abstract_inverted_index.quantitative, | 118 |
| abstract_inverted_index.Gram-negative, | 46 |
| abstract_inverted_index.Gram-positive, | 45 |
| abstract_inverted_index.biotechnology, | 137 |
| abstract_inverted_index.azide-containing | 82 |
| abstract_inverted_index.bacteria—using | 50 |
| abstract_inverted_index.functionalization | 3, 40, 70 |
| abstract_inverted_index.species-specific, | 20 |
| abstract_inverted_index.species—including | 44 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.45742787 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |