A Variational Model Dedicated to Joint Segmentation, Registration, and Atlas Generation for Shape Analysis Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1137/19m1271907
In medical image analysis, constructing an atlas, i.e. a mean representative of an ensemble of images, is a critical task for practitioners to estimate variability of shapes inside a population, and to characterise and understand how structural shape changes have an impact on health.This involves identifying significant shape constituents of a set of images, a process called segmentation, and mapping this group of images to an unknown mean image, a task called registration, making a statistical analysis of the image population possible.To achieve this goal, we propose treating these operations jointly to leverage their positive mutual influence, in a hyperelasticity setting, by viewing the shapes to be matched as Ogden materials.The approach is complemented by novel hard constraints on the L ∞ norm of both the Jacobian and its inverse, ensuring that the deformation is a bi-Lipschitz homeomorphism.Segmentation is based on the Potts model, which allows for a partition into more than two regions, i.e. more than one shape.The connection to the registration problem is ensured by the dissimilarity measure that aims to align the segmented shapes.A representation of the deformation field in a linear space equipped with a scalar product is then computed in order to perform a geometry-driven Principal Component Analysis (PCA) and to extract the main modes of variations inside the image population.Theoretical results emphasizing the mathematical soundness of the model are provided, among which existence of minimisers, analysis of a numerical method, asymptotic results and a PCA analysis, as well as numerical simulations demonstrating the ability of the model to produce an atlas exhibiting sharp edges, high contrast and a consistent shape.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1137/19m1271907
- OA Status
- green
- References
- 58
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2955894367
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2955894367Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1137/19m1271907Digital Object Identifier
- Title
-
A Variational Model Dedicated to Joint Segmentation, Registration, and Atlas Generation for Shape AnalysisWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Noémie Debroux, John A. D. Aston, Fabien Bonardi, Alistair Forbes, Carole Le Guyader, Marina Romanchikova, Carola‐Bibiane SchönliebList of authors in order
- Landing page
-
https://doi.org/10.1137/19m1271907Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1907.01840Direct OA link when available
- Concepts
-
Population, Shape analysis (program analysis), Atlas (anatomy), Artificial intelligence, Segmentation, Image registration, Jacobian matrix and determinant, Computer science, Mathematics, Pattern recognition (psychology), Computer vision, Image (mathematics), Applied mathematics, Biology, Sociology, Static analysis, Paleontology, Demography, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
58Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2955894367 |
|---|---|
| doi | https://doi.org/10.1137/19m1271907 |
| ids.doi | https://doi.org/10.60692/mr0j4-3dm69 |
| ids.mag | 2955894367 |
| ids.openalex | https://openalex.org/W2955894367 |
| fwci | 0.0 |
| type | preprint |
| title | A Variational Model Dedicated to Joint Segmentation, Registration, and Atlas Generation for Shape Analysis |
| awards[0].id | https://openalex.org/G5855033780 |
| awards[0].funder_id | https://openalex.org/F4320334627 |
| awards[0].display_name | |
| awards[0].funder_award_id | EP/M00483X/1 |
| awards[0].funder_display_name | Engineering and Physical Sciences Research Council |
| awards[1].id | https://openalex.org/G2142235621 |
| awards[1].funder_id | https://openalex.org/F4320334627 |
| awards[1].display_name | |
| awards[1].funder_award_id | EP/J009539/1 |
| awards[1].funder_display_name | Engineering and Physical Sciences Research Council |
| awards[2].id | https://openalex.org/G763414266 |
| awards[2].funder_id | https://openalex.org/F4320334627 |
| awards[2].display_name | |
| awards[2].funder_award_id | EP/S026045/1 |
| awards[2].funder_display_name | Engineering and Physical Sciences Research Council |
| awards[3].id | https://openalex.org/G6579398875 |
| awards[3].funder_id | https://openalex.org/F4320334627 |
| awards[3].display_name | |
| awards[3].funder_award_id | EP/N014588/1 |
| awards[3].funder_display_name | Engineering and Physical Sciences Research Council |
| biblio.issue | 1 |
| biblio.volume | 13 |
| biblio.last_page | 380 |
| biblio.first_page | 351 |
| topics[0].id | https://openalex.org/T10052 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9891999959945679 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Medical Image Segmentation Techniques |
| topics[1].id | https://openalex.org/T10136 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.974399983882904 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Inference |
| topics[2].id | https://openalex.org/T12417 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9606999754905701 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2608 |
| topics[2].subfield.display_name | Geometry and Topology |
| topics[2].display_name | Morphological variations and asymmetry |
| funders[0].id | https://openalex.org/F4320334627 |
| funders[0].ror | https://ror.org/0439y7842 |
| funders[0].display_name | Engineering and Physical Sciences Research Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2908647359 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5936453938484192 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[0].display_name | Population |
| concepts[1].id | https://openalex.org/C112604564 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5642504096031189 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7489226 |
| concepts[1].display_name | Shape analysis (program analysis) |
| concepts[2].id | https://openalex.org/C2776673561 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5483551025390625 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q655357 |
| concepts[2].display_name | Atlas (anatomy) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5479006767272949 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C89600930 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5421115159988403 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[4].display_name | Segmentation |
| concepts[5].id | https://openalex.org/C166704113 |
| concepts[5].level | 3 |
| concepts[5].score | 0.48984405398368835 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q861092 |
| concepts[5].display_name | Image registration |
| concepts[6].id | https://openalex.org/C200331156 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48856744170188904 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q506041 |
| concepts[6].display_name | Jacobian matrix and determinant |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4414907693862915 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4182601571083069 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.37444955110549927 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C31972630 |
| concepts[10].level | 1 |
| concepts[10].score | 0.33629509806632996 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[10].display_name | Computer vision |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.19397354125976562 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C28826006 |
| concepts[12].level | 1 |
| concepts[12].score | 0.13966256380081177 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[12].display_name | Applied mathematics |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C144024400 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[14].display_name | Sociology |
| concepts[15].id | https://openalex.org/C97686452 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7604153 |
| concepts[15].display_name | Static analysis |
| concepts[16].id | https://openalex.org/C151730666 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[16].display_name | Paleontology |
| concepts[17].id | https://openalex.org/C149923435 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[17].display_name | Demography |
| concepts[18].id | https://openalex.org/C199360897 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[18].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/population |
| keywords[0].score | 0.5936453938484192 |
| keywords[0].display_name | Population |
| keywords[1].id | https://openalex.org/keywords/shape-analysis |
| keywords[1].score | 0.5642504096031189 |
| keywords[1].display_name | Shape analysis (program analysis) |
| keywords[2].id | https://openalex.org/keywords/atlas |
| keywords[2].score | 0.5483551025390625 |
| keywords[2].display_name | Atlas (anatomy) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5479006767272949 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/segmentation |
| keywords[4].score | 0.5421115159988403 |
| keywords[4].display_name | Segmentation |
| keywords[5].id | https://openalex.org/keywords/image-registration |
| keywords[5].score | 0.48984405398368835 |
| keywords[5].display_name | Image registration |
| keywords[6].id | https://openalex.org/keywords/jacobian-matrix-and-determinant |
| keywords[6].score | 0.48856744170188904 |
| keywords[6].display_name | Jacobian matrix and determinant |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.4414907693862915 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.4182601571083069 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.37444955110549927 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/computer-vision |
| keywords[10].score | 0.33629509806632996 |
| keywords[10].display_name | Computer vision |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.19397354125976562 |
| keywords[11].display_name | Image (mathematics) |
| keywords[12].id | https://openalex.org/keywords/applied-mathematics |
| keywords[12].score | 0.13966256380081177 |
| keywords[12].display_name | Applied mathematics |
| language | en |
| locations[0].id | doi:10.1137/19m1271907 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S152600803 |
| locations[0].source.issn | 1936-4954 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1936-4954 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SIAM Journal on Imaging Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310320508 |
| locations[0].source.host_organization_name | Society for Industrial and Applied Mathematics |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320508 |
| locations[0].source.host_organization_lineage_names | Society for Industrial and Applied Mathematics |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | SIAM Journal on Imaging Sciences |
| locations[0].landing_page_url | https://doi.org/10.1137/19m1271907 |
| locations[1].id | pmh:oai:arXiv.org:1907.01840 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/1907.01840 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/1907.01840 |
| locations[2].id | pmh:oai:www.repository.cam.ac.uk:1810/304601 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401776 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Apollo (University of Cambridge) |
| locations[2].source.host_organization | https://openalex.org/I241749 |
| locations[2].source.host_organization_name | University of Cambridge |
| locations[2].source.host_organization_lineage | https://openalex.org/I241749 |
| locations[2].license | |
| locations[2].pdf_url | https://www.repository.cam.ac.uk/handle/1810/304601 |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.repository.cam.ac.uk/handle/1810/304601 |
| locations[3].id | mag:2955894367 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | arXiv (Cornell University) |
| locations[3].landing_page_url | http://export.arxiv.org/pdf/1907.01840 |
| locations[4].id | pmh:oai:HAL:hal-03034316v1 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306402512 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[4].source.host_organization | https://openalex.org/I1294671590 |
| locations[4].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[4].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Journal articles |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | SIAM Journal on Imaging Sciences, 2020, 13 (1), pp.351-380. ⟨10.1137/19M1271907⟩ |
| locations[4].landing_page_url | https://uca.hal.science/hal-03034316 |
| locations[5].id | doi:10.48550/arxiv.1907.01840 |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S4306400194 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | True |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | arXiv (Cornell University) |
| locations[5].source.host_organization | https://openalex.org/I205783295 |
| locations[5].source.host_organization_name | Cornell University |
| locations[5].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[5].license | |
| locations[5].pdf_url | |
| locations[5].version | |
| locations[5].raw_type | article |
| locations[5].license_id | |
| locations[5].is_accepted | False |
| locations[5].is_published | |
| locations[5].raw_source_name | |
| locations[5].landing_page_url | https://doi.org/10.48550/arxiv.1907.01840 |
| locations[6].id | doi:10.17863/cam.51683 |
| locations[6].is_oa | True |
| locations[6].source.id | https://openalex.org/S7407050737 |
| locations[6].source.type | repository |
| locations[6].source.is_oa | False |
| locations[6].source.issn_l | |
| locations[6].source.is_core | False |
| locations[6].source.is_in_doaj | False |
| locations[6].source.display_name | Apollo |
| locations[6].source.host_organization | |
| locations[6].source.host_organization_name | |
| locations[6].license | |
| locations[6].pdf_url | |
| locations[6].version | |
| locations[6].raw_type | article-journal |
| locations[6].license_id | |
| locations[6].is_accepted | False |
| locations[6].is_published | |
| locations[6].raw_source_name | |
| locations[6].landing_page_url | https://doi.org/10.17863/cam.51683 |
| locations[7].id | doi:10.60692/54rqh-19s93 |
| locations[7].is_oa | True |
| locations[7].source.id | https://openalex.org/S7407051682 |
| locations[7].source.type | repository |
| locations[7].source.is_oa | False |
| locations[7].source.issn_l | |
| locations[7].source.is_core | False |
| locations[7].source.is_in_doaj | False |
| locations[7].source.display_name | Greater South Information System |
| locations[7].source.host_organization | |
| locations[7].source.host_organization_name | |
| locations[7].license | |
| locations[7].pdf_url | |
| locations[7].version | |
| locations[7].raw_type | article-journal |
| locations[7].license_id | |
| locations[7].is_accepted | False |
| locations[7].is_published | |
| locations[7].raw_source_name | |
| locations[7].landing_page_url | https://doi.org/10.60692/54rqh-19s93 |
| locations[8].id | doi:10.60692/mr0j4-3dm69 |
| locations[8].is_oa | True |
| locations[8].source.id | https://openalex.org/S7407051682 |
| locations[8].source.type | repository |
| locations[8].source.is_oa | False |
| locations[8].source.issn_l | |
| locations[8].source.is_core | False |
| locations[8].source.is_in_doaj | False |
| locations[8].source.display_name | Greater South Information System |
| locations[8].source.host_organization | |
| locations[8].source.host_organization_name | |
| locations[8].license | |
| locations[8].pdf_url | |
| locations[8].version | |
| locations[8].raw_type | article-journal |
| locations[8].license_id | |
| locations[8].is_accepted | False |
| locations[8].is_published | |
| locations[8].raw_source_name | |
| locations[8].landing_page_url | https://doi.org/10.60692/mr0j4-3dm69 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5044481058 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5329-5485 |
| authorships[0].author.display_name | Noémie Debroux |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I241749 |
| authorships[0].affiliations[0].raw_affiliation_string | Univ. of Cambridge |
| authorships[0].institutions[0].id | https://openalex.org/I241749 |
| authorships[0].institutions[0].ror | https://ror.org/013meh722 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I241749 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Cambridge |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Noémie Debroux |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Univ. of Cambridge |
| authorships[1].author.id | https://openalex.org/A5089035453 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3770-9342 |
| authorships[1].author.display_name | John A. D. Aston |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I241749 |
| authorships[1].affiliations[0].raw_affiliation_string | Univ. of Cambridge |
| authorships[1].institutions[0].id | https://openalex.org/I241749 |
| authorships[1].institutions[0].ror | https://ror.org/013meh722 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I241749 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Cambridge |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | John Aston |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Univ. of Cambridge |
| authorships[2].author.id | https://openalex.org/A5060409577 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3555-7306 |
| authorships[2].author.display_name | Fabien Bonardi |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I241749 |
| authorships[2].affiliations[0].raw_affiliation_string | Univ. of Cambridge |
| authorships[2].institutions[0].id | https://openalex.org/I241749 |
| authorships[2].institutions[0].ror | https://ror.org/013meh722 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I241749 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of Cambridge |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fabien Bonardi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Univ. of Cambridge |
| authorships[3].author.id | https://openalex.org/A5083084249 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6640-9691 |
| authorships[3].author.display_name | Alistair Forbes |
| authorships[3].countries | FR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I88467170 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Evry-Val d'Essonne |
| authorships[3].institutions[0].id | https://openalex.org/I88467170 |
| authorships[3].institutions[0].ror | https://ror.org/00e96v939 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I277688954, https://openalex.org/I88467170 |
| authorships[3].institutions[0].country_code | FR |
| authorships[3].institutions[0].display_name | Université d'Évry Val-d'Essonne |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Alistair Forbes |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Evry-Val d'Essonne |
| authorships[4].author.id | https://openalex.org/A5018848158 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2192-6630 |
| authorships[4].author.display_name | Carole Le Guyader |
| authorships[4].countries | FR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210155549, https://openalex.org/I4392021175, https://openalex.org/I62396329, https://openalex.org/I88814501 |
| authorships[4].affiliations[0].raw_affiliation_string | Laboratoire de Mathématiques de l'INSA de Rouen Normandie |
| authorships[4].institutions[0].id | https://openalex.org/I4392021175 |
| authorships[4].institutions[0].ror | https://ror.org/009rwsd77 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210105918, https://openalex.org/I4392021175, https://openalex.org/I88814501 |
| authorships[4].institutions[0].country_code | |
| authorships[4].institutions[0].display_name | Laboratoire de Mathématiques de l'INSA de Rouen |
| authorships[4].institutions[1].id | https://openalex.org/I88814501 |
| authorships[4].institutions[1].ror | https://ror.org/020ws7586 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210105918, https://openalex.org/I88814501 |
| authorships[4].institutions[1].country_code | FR |
| authorships[4].institutions[1].display_name | Institut National des Sciences Appliquées Rouen Normandie |
| authorships[4].institutions[2].id | https://openalex.org/I4210155549 |
| authorships[4].institutions[2].ror | https://ror.org/05sd5r855 |
| authorships[4].institutions[2].type | facility |
| authorships[4].institutions[2].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I198244214, https://openalex.org/I4210141950, https://openalex.org/I4210155549 |
| authorships[4].institutions[2].country_code | FR |
| authorships[4].institutions[2].display_name | Laboratoire de Mathématiques |
| authorships[4].institutions[3].id | https://openalex.org/I62396329 |
| authorships[4].institutions[3].ror | https://ror.org/03nhjew95 |
| authorships[4].institutions[3].type | education |
| authorships[4].institutions[3].lineage | https://openalex.org/I4210105918, https://openalex.org/I62396329 |
| authorships[4].institutions[3].country_code | FR |
| authorships[4].institutions[3].display_name | Université de Rouen Normandie |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Carole Le Guyader |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Laboratoire de Mathématiques de l'INSA de Rouen Normandie |
| authorships[5].author.id | https://openalex.org/A5073631808 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0433-0122 |
| authorships[5].author.display_name | Marina Romanchikova |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I134421475 |
| authorships[5].affiliations[0].raw_affiliation_string | National Physical Laboratory, Teddington#TAB# |
| authorships[5].institutions[0].id | https://openalex.org/I134421475 |
| authorships[5].institutions[0].ror | https://ror.org/015w2mp89 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I134421475 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | National Physical Laboratory |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Marina Romanchikova |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | National Physical Laboratory, Teddington#TAB# |
| authorships[6].author.id | https://openalex.org/A5033880300 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-0099-6306 |
| authorships[6].author.display_name | Carola‐Bibiane Schönlieb |
| authorships[6].countries | FR |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I88814501 |
| authorships[6].affiliations[0].raw_affiliation_string | Institut National des Sciences Appliquées de Rouen |
| authorships[6].institutions[0].id | https://openalex.org/I88814501 |
| authorships[6].institutions[0].ror | https://ror.org/020ws7586 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210105918, https://openalex.org/I88814501 |
| authorships[6].institutions[0].country_code | FR |
| authorships[6].institutions[0].display_name | Institut National des Sciences Appliquées Rouen Normandie |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Carola Schönlieb |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Institut National des Sciences Appliquées de Rouen |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1907.01840 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Variational Model Dedicated to Joint Segmentation, Registration, and Atlas Generation for Shape Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10052 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9891999959945679 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Medical Image Segmentation Techniques |
| related_works | https://openalex.org/W3007952292, https://openalex.org/W1808251256, https://openalex.org/W2250899144, https://openalex.org/W1998181322, https://openalex.org/W1501769036, https://openalex.org/W2500316847, https://openalex.org/W2278399626, https://openalex.org/W1585749274, https://openalex.org/W2389738354, https://openalex.org/W1491051173, https://openalex.org/W86638872, https://openalex.org/W2184280312, https://openalex.org/W175573507, https://openalex.org/W2094856190, https://openalex.org/W2139998199, https://openalex.org/W1874649632, https://openalex.org/W2763407026, https://openalex.org/W3131430163, https://openalex.org/W2082908671, https://openalex.org/W176501282 |
| cited_by_count | 0 |
| locations_count | 9 |
| best_oa_location.id | pmh:oai:arXiv.org:1907.01840 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1907.01840 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1907.01840 |
| primary_location.id | doi:10.1137/19m1271907 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S152600803 |
| primary_location.source.issn | 1936-4954 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1936-4954 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SIAM Journal on Imaging Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310320508 |
| primary_location.source.host_organization_name | Society for Industrial and Applied Mathematics |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320508 |
| primary_location.source.host_organization_lineage_names | Society for Industrial and Applied Mathematics |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | SIAM Journal on Imaging Sciences |
| primary_location.landing_page_url | https://doi.org/10.1137/19m1271907 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W3037244518, https://openalex.org/W2019161608, https://openalex.org/W1965274240, https://openalex.org/W2170167891, https://openalex.org/W2060411371, https://openalex.org/W2076629172, https://openalex.org/W2615556113, https://openalex.org/W2473606915, https://openalex.org/W2068130602, https://openalex.org/W2795320988, https://openalex.org/W2088293348, https://openalex.org/W2761240400, https://openalex.org/W2130257210, https://openalex.org/W2065646479, https://openalex.org/W2144129994, https://openalex.org/W2795823403, https://openalex.org/W2571726372, https://openalex.org/W2084677589, https://openalex.org/W1983050445, https://openalex.org/W2129759040, https://openalex.org/W1533758240, https://openalex.org/W2037316890, https://openalex.org/W2010115470, https://openalex.org/W2073978776, https://openalex.org/W2121014637, https://openalex.org/W2104095591, https://openalex.org/W2019569173, https://openalex.org/W2962950991, https://openalex.org/W1994658197, https://openalex.org/W2142064545, https://openalex.org/W1990804363, https://openalex.org/W2265968420, https://openalex.org/W2141383192, https://openalex.org/W2787857257, https://openalex.org/W2114487471, https://openalex.org/W2020327980, https://openalex.org/W2209264614, https://openalex.org/W1692193044, https://openalex.org/W2528351259, https://openalex.org/W2159793005, https://openalex.org/W2080179319, https://openalex.org/W1994711007, https://openalex.org/W2108425939, https://openalex.org/W2115167851, https://openalex.org/W2146317465, https://openalex.org/W2624881194, https://openalex.org/W2138835141, https://openalex.org/W2077079080, https://openalex.org/W2103857226, https://openalex.org/W2073708032, https://openalex.org/W2565467562, https://openalex.org/W2128506906, https://openalex.org/W2155598194, https://openalex.org/W1808966389, https://openalex.org/W4285719527, https://openalex.org/W2953869821, https://openalex.org/W1963987355, https://openalex.org/W1537639429 |
| referenced_works_count | 58 |
| abstract_inverted_index.L | 120 |
| abstract_inverted_index.a | 8, 17, 28, 50, 54, 69, 74, 98, 135, 147, 183, 188, 198, 233, 239, 263 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.an | 5, 12, 40, 65, 255 |
| abstract_inverted_index.as | 108, 242, 244 |
| abstract_inverted_index.be | 106 |
| abstract_inverted_index.by | 101, 114, 166 |
| abstract_inverted_index.in | 97, 182, 194 |
| abstract_inverted_index.is | 16, 112, 134, 138, 164, 191 |
| abstract_inverted_index.of | 11, 14, 25, 49, 52, 62, 77, 123, 178, 210, 221, 229, 232, 250 |
| abstract_inverted_index.on | 42, 118, 140 |
| abstract_inverted_index.to | 22, 31, 64, 91, 105, 160, 172, 196, 205, 253 |
| abstract_inverted_index.we | 85 |
| abstract_inverted_index.PCA | 240 |
| abstract_inverted_index.and | 30, 33, 58, 127, 204, 238, 262 |
| abstract_inverted_index.are | 224 |
| abstract_inverted_index.for | 20, 146 |
| abstract_inverted_index.how | 35 |
| abstract_inverted_index.its | 128 |
| abstract_inverted_index.one | 157 |
| abstract_inverted_index.set | 51 |
| abstract_inverted_index.the | 78, 103, 119, 125, 132, 141, 161, 167, 174, 179, 207, 213, 218, 222, 248, 251 |
| abstract_inverted_index.two | 152 |
| abstract_inverted_index.∞ | 121 |
| abstract_inverted_index.aims | 171 |
| abstract_inverted_index.both | 124 |
| abstract_inverted_index.hard | 116 |
| abstract_inverted_index.have | 39 |
| abstract_inverted_index.high | 260 |
| abstract_inverted_index.i.e. | 7, 154 |
| abstract_inverted_index.into | 149 |
| abstract_inverted_index.main | 208 |
| abstract_inverted_index.mean | 9, 67 |
| abstract_inverted_index.more | 150, 155 |
| abstract_inverted_index.norm | 122 |
| abstract_inverted_index.task | 19, 70 |
| abstract_inverted_index.than | 151, 156 |
| abstract_inverted_index.that | 131, 170 |
| abstract_inverted_index.then | 192 |
| abstract_inverted_index.this | 60, 83 |
| abstract_inverted_index.well | 243 |
| abstract_inverted_index.with | 187 |
| abstract_inverted_index.(PCA) | 203 |
| abstract_inverted_index.Ogden | 109 |
| abstract_inverted_index.Potts | 142 |
| abstract_inverted_index.align | 173 |
| abstract_inverted_index.among | 226 |
| abstract_inverted_index.atlas | 256 |
| abstract_inverted_index.based | 139 |
| abstract_inverted_index.field | 181 |
| abstract_inverted_index.goal, | 84 |
| abstract_inverted_index.group | 61 |
| abstract_inverted_index.image | 2, 79, 214 |
| abstract_inverted_index.model | 223, 252 |
| abstract_inverted_index.modes | 209 |
| abstract_inverted_index.novel | 115 |
| abstract_inverted_index.order | 195 |
| abstract_inverted_index.shape | 37, 47 |
| abstract_inverted_index.sharp | 258 |
| abstract_inverted_index.space | 185 |
| abstract_inverted_index.their | 93 |
| abstract_inverted_index.these | 88 |
| abstract_inverted_index.which | 144, 227 |
| abstract_inverted_index.allows | 145 |
| abstract_inverted_index.atlas, | 6 |
| abstract_inverted_index.called | 56, 71 |
| abstract_inverted_index.edges, | 259 |
| abstract_inverted_index.image, | 68 |
| abstract_inverted_index.images | 63 |
| abstract_inverted_index.impact | 41 |
| abstract_inverted_index.inside | 27, 212 |
| abstract_inverted_index.linear | 184 |
| abstract_inverted_index.making | 73 |
| abstract_inverted_index.model, | 143 |
| abstract_inverted_index.mutual | 95 |
| abstract_inverted_index.scalar | 189 |
| abstract_inverted_index.shape. | 265 |
| abstract_inverted_index.shapes | 26, 104 |
| abstract_inverted_index.ability | 249 |
| abstract_inverted_index.achieve | 82 |
| abstract_inverted_index.changes | 38 |
| abstract_inverted_index.ensured | 165 |
| abstract_inverted_index.extract | 206 |
| abstract_inverted_index.images, | 15, 53 |
| abstract_inverted_index.jointly | 90 |
| abstract_inverted_index.mapping | 59 |
| abstract_inverted_index.matched | 107 |
| abstract_inverted_index.measure | 169 |
| abstract_inverted_index.medical | 1 |
| abstract_inverted_index.method, | 235 |
| abstract_inverted_index.perform | 197 |
| abstract_inverted_index.problem | 163 |
| abstract_inverted_index.process | 55 |
| abstract_inverted_index.produce | 254 |
| abstract_inverted_index.product | 190 |
| abstract_inverted_index.propose | 86 |
| abstract_inverted_index.results | 216, 237 |
| abstract_inverted_index.unknown | 66 |
| abstract_inverted_index.viewing | 102 |
| abstract_inverted_index.Analysis | 202 |
| abstract_inverted_index.Jacobian | 126 |
| abstract_inverted_index.analysis | 76, 231 |
| abstract_inverted_index.approach | 111 |
| abstract_inverted_index.computed | 193 |
| abstract_inverted_index.contrast | 261 |
| abstract_inverted_index.critical | 18 |
| abstract_inverted_index.ensemble | 13 |
| abstract_inverted_index.ensuring | 130 |
| abstract_inverted_index.equipped | 186 |
| abstract_inverted_index.estimate | 23 |
| abstract_inverted_index.inverse, | 129 |
| abstract_inverted_index.involves | 44 |
| abstract_inverted_index.leverage | 92 |
| abstract_inverted_index.positive | 94 |
| abstract_inverted_index.regions, | 153 |
| abstract_inverted_index.setting, | 100 |
| abstract_inverted_index.shapes.A | 176 |
| abstract_inverted_index.treating | 87 |
| abstract_inverted_index.Component | 201 |
| abstract_inverted_index.Principal | 200 |
| abstract_inverted_index.analysis, | 3, 241 |
| abstract_inverted_index.existence | 228 |
| abstract_inverted_index.numerical | 234, 245 |
| abstract_inverted_index.partition | 148 |
| abstract_inverted_index.provided, | 225 |
| abstract_inverted_index.segmented | 175 |
| abstract_inverted_index.shape.The | 158 |
| abstract_inverted_index.soundness | 220 |
| abstract_inverted_index.asymptotic | 236 |
| abstract_inverted_index.connection | 159 |
| abstract_inverted_index.consistent | 264 |
| abstract_inverted_index.exhibiting | 257 |
| abstract_inverted_index.influence, | 96 |
| abstract_inverted_index.operations | 89 |
| abstract_inverted_index.population | 80 |
| abstract_inverted_index.structural | 36 |
| abstract_inverted_index.understand | 34 |
| abstract_inverted_index.variations | 211 |
| abstract_inverted_index.constraints | 117 |
| abstract_inverted_index.deformation | 133, 180 |
| abstract_inverted_index.emphasizing | 217 |
| abstract_inverted_index.health.This | 43 |
| abstract_inverted_index.identifying | 45 |
| abstract_inverted_index.minimisers, | 230 |
| abstract_inverted_index.population, | 29 |
| abstract_inverted_index.possible.To | 81 |
| abstract_inverted_index.significant | 46 |
| abstract_inverted_index.simulations | 246 |
| abstract_inverted_index.statistical | 75 |
| abstract_inverted_index.variability | 24 |
| abstract_inverted_index.bi-Lipschitz | 136 |
| abstract_inverted_index.characterise | 32 |
| abstract_inverted_index.complemented | 113 |
| abstract_inverted_index.constituents | 48 |
| abstract_inverted_index.constructing | 4 |
| abstract_inverted_index.mathematical | 219 |
| abstract_inverted_index.registration | 162 |
| abstract_inverted_index.demonstrating | 247 |
| abstract_inverted_index.dissimilarity | 168 |
| abstract_inverted_index.materials.The | 110 |
| abstract_inverted_index.practitioners | 21 |
| abstract_inverted_index.registration, | 72 |
| abstract_inverted_index.segmentation, | 57 |
| abstract_inverted_index.representation | 177 |
| abstract_inverted_index.representative | 10 |
| abstract_inverted_index.geometry-driven | 199 |
| abstract_inverted_index.hyperelasticity | 99 |
| abstract_inverted_index.population.Theoretical | 215 |
| abstract_inverted_index.homeomorphism.Segmentation | 137 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.00424564 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |