A Virtual Machine Consolidation Algorithm Based on Ant Colony System and Extreme Learning Machine for Cloud Data Center Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1109/access.2019.2961786
The energy consumption issue of large-scale data centers is attracting more and more attention. Virtual machine consolidation can significantly reduce energy consumption by migrating virtual machines from one physical machine to another. However, excessive virtual machine consolidation can lead to dangerous Service Level Agreement (SLA) violations. Therefore, how to balance between effective energy consumption and SLA violations avoidance effectively is a paradox to be mediated. The virtual machine consolidation problem is NP-hard. The traditional heuristic algorithm is easy to fall into the local optimal and some meta-heuristic algorithms can help to avoid it. However, the existing meta-heuristic algorithms are with high complexity. Therefore, we propose a lower complexity multi-population ant colony system algorithm with the Extreme Learning Machine (ELM) prediction (ELM_MPACS). The algorithm firstly predicts the host state employing ELM and then the virtual machine on the overloaded host will be migrated to the normal host, while the virtual machine on the underloaded host will be consolidated to another underloaded host with higher utilization. Multiple populations concurrently construct migration plans and local search further optimizes the results obtained by each population to reduce SLA violations. We compare ELM_MPACS with the benchmark, heuristic and meta-heuristic algorithms. The experimental results have shown that compared with these algorithms, our algorithm reduces energy consumption, migration times and SLA violations effectively.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2019.2961786
- https://ieeexplore.ieee.org/ielx7/6287639/8948470/08939445.pdf
- OA Status
- gold
- Cited By
- 39
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2998399378
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2998399378Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2019.2961786Digital Object Identifier
- Title
-
A Virtual Machine Consolidation Algorithm Based on Ant Colony System and Extreme Learning Machine for Cloud Data CenterWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-12-23Full publication date if available
- Authors
-
Fagui Liu, Zhenjiang Ma, Bin Wang, Weiwei LinList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2019.2961786Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8948470/08939445.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8948470/08939445.pdfDirect OA link when available
- Concepts
-
Computer science, Virtual machine, Service-level agreement, Algorithm, Population, Extreme learning machine, Cloud computing, Machine learning, Host (biology), Artificial intelligence, Energy consumption, Distributed computing, Operating system, Engineering, Demography, Artificial neural network, Ecology, Sociology, Electrical engineering, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
39Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 10, 2023: 10, 2022: 3, 2021: 8Per-year citation counts (last 5 years)
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2998399378 |
|---|---|
| doi | https://doi.org/10.1109/access.2019.2961786 |
| ids.doi | https://doi.org/10.1109/access.2019.2961786 |
| ids.mag | 2998399378 |
| ids.openalex | https://openalex.org/W2998399378 |
| fwci | 6.18817064 |
| type | article |
| title | A Virtual Machine Consolidation Algorithm Based on Ant Colony System and Extreme Learning Machine for Cloud Data Center |
| awards[0].id | https://openalex.org/G3918016905 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61872084 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G8569276088 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 61772205 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 8 |
| biblio.last_page | 67 |
| biblio.first_page | 53 |
| topics[0].id | https://openalex.org/T10101 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Cloud Computing and Resource Management |
| topics[1].id | https://openalex.org/T12676 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9986000061035156 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and ELM |
| topics[2].id | https://openalex.org/T10273 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.996999979019165 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | IoT and Edge/Fog Computing |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8153918981552124 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C25344961 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7144354581832886 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192726 |
| concepts[1].display_name | Virtual machine |
| concepts[2].id | https://openalex.org/C2778160497 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5870803594589233 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q869830 |
| concepts[2].display_name | Service-level agreement |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.561987042427063 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C2908647359 |
| concepts[4].level | 2 |
| concepts[4].score | 0.52938312292099 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[4].display_name | Population |
| concepts[5].id | https://openalex.org/C2780150128 |
| concepts[5].level | 3 |
| concepts[5].score | 0.527476966381073 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21948731 |
| concepts[5].display_name | Extreme learning machine |
| concepts[6].id | https://openalex.org/C79974875 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4882073700428009 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[6].display_name | Cloud computing |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4296773076057434 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C126831891 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4240429997444153 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q221673 |
| concepts[8].display_name | Host (biology) |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4231032431125641 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C2780165032 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42105984687805176 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q16869822 |
| concepts[10].display_name | Energy consumption |
| concepts[11].id | https://openalex.org/C120314980 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4063166379928589 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[11].display_name | Distributed computing |
| concepts[12].id | https://openalex.org/C111919701 |
| concepts[12].level | 1 |
| concepts[12].score | 0.1409306824207306 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[12].display_name | Operating system |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0991261899471283 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C149923435 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[14].display_name | Demography |
| concepts[15].id | https://openalex.org/C50644808 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[15].display_name | Artificial neural network |
| concepts[16].id | https://openalex.org/C18903297 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[16].display_name | Ecology |
| concepts[17].id | https://openalex.org/C144024400 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[17].display_name | Sociology |
| concepts[18].id | https://openalex.org/C119599485 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[18].display_name | Electrical engineering |
| concepts[19].id | https://openalex.org/C86803240 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[19].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8153918981552124 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/virtual-machine |
| keywords[1].score | 0.7144354581832886 |
| keywords[1].display_name | Virtual machine |
| keywords[2].id | https://openalex.org/keywords/service-level-agreement |
| keywords[2].score | 0.5870803594589233 |
| keywords[2].display_name | Service-level agreement |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.561987042427063 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/population |
| keywords[4].score | 0.52938312292099 |
| keywords[4].display_name | Population |
| keywords[5].id | https://openalex.org/keywords/extreme-learning-machine |
| keywords[5].score | 0.527476966381073 |
| keywords[5].display_name | Extreme learning machine |
| keywords[6].id | https://openalex.org/keywords/cloud-computing |
| keywords[6].score | 0.4882073700428009 |
| keywords[6].display_name | Cloud computing |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.4296773076057434 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/host |
| keywords[8].score | 0.4240429997444153 |
| keywords[8].display_name | Host (biology) |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.4231032431125641 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/energy-consumption |
| keywords[10].score | 0.42105984687805176 |
| keywords[10].display_name | Energy consumption |
| keywords[11].id | https://openalex.org/keywords/distributed-computing |
| keywords[11].score | 0.4063166379928589 |
| keywords[11].display_name | Distributed computing |
| keywords[12].id | https://openalex.org/keywords/operating-system |
| keywords[12].score | 0.1409306824207306 |
| keywords[12].display_name | Operating system |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.0991261899471283 |
| keywords[13].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1109/access.2019.2961786 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/08939445.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2019.2961786 |
| locations[1].id | pmh:oai:doaj.org/article:3b7df918d6a54f65b5e5b32fcbbc1943 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 8, Pp 53-67 (2020) |
| locations[1].landing_page_url | https://doaj.org/article/3b7df918d6a54f65b5e5b32fcbbc1943 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5005463262 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1135-4982 |
| authorships[0].author.display_name | Fagui Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
| authorships[0].institutions[0].id | https://openalex.org/I90610280 |
| authorships[0].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | South China University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fagui Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
| authorships[1].author.id | https://openalex.org/A5033706673 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2288-2126 |
| authorships[1].author.display_name | Zhenjiang Ma |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
| authorships[1].institutions[0].id | https://openalex.org/I90610280 |
| authorships[1].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | South China University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhenjiang Ma |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
| authorships[2].author.id | https://openalex.org/A5073236866 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8861-571X |
| authorships[2].author.display_name | Bin Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
| authorships[2].institutions[0].id | https://openalex.org/I90610280 |
| authorships[2].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | South China University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bin Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
| authorships[3].author.id | https://openalex.org/A5007440245 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6876-1795 |
| authorships[3].author.display_name | Weiwei Lin |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
| authorships[3].institutions[0].id | https://openalex.org/I90610280 |
| authorships[3].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | South China University of Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Weiwei Lin |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/08939445.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Virtual Machine Consolidation Algorithm Based on Ant Colony System and Extreme Learning Machine for Cloud Data Center |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10101 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Cloud Computing and Resource Management |
| related_works | https://openalex.org/W2067443264, https://openalex.org/W31566076, https://openalex.org/W2212663758, https://openalex.org/W4313252615, https://openalex.org/W3006629403, https://openalex.org/W2795027727, https://openalex.org/W2977470299, https://openalex.org/W2811232571, https://openalex.org/W2573860592, https://openalex.org/W2788815399 |
| cited_by_count | 39 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 10 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 8 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 6 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2019.2961786 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/08939445.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2019.2961786 |
| primary_location.id | doi:10.1109/access.2019.2961786 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/08939445.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2019.2961786 |
| publication_date | 2019-12-23 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2967768062, https://openalex.org/W2941753313, https://openalex.org/W2555568797, https://openalex.org/W2755894621, https://openalex.org/W2026131661, https://openalex.org/W2945927710, https://openalex.org/W2737359858, https://openalex.org/W2908699428, https://openalex.org/W2513747208, https://openalex.org/W1017666633, https://openalex.org/W2620759855, https://openalex.org/W2118051273, https://openalex.org/W2908872525, https://openalex.org/W1582571683, https://openalex.org/W6679935922, https://openalex.org/W2793926362, https://openalex.org/W2551000267, https://openalex.org/W1994043290, https://openalex.org/W2157016369, https://openalex.org/W2052361047, https://openalex.org/W2317522912, https://openalex.org/W2793500743, https://openalex.org/W2284351912, https://openalex.org/W2019609318, https://openalex.org/W247186222, https://openalex.org/W2343635147, https://openalex.org/W2117014758, https://openalex.org/W2119242743, https://openalex.org/W2787499911, https://openalex.org/W2414620989, https://openalex.org/W2148459868, https://openalex.org/W2783399051, https://openalex.org/W2114296561, https://openalex.org/W2045287414, https://openalex.org/W2110374615, https://openalex.org/W2154929945, https://openalex.org/W2940954603, https://openalex.org/W2034609836, https://openalex.org/W2787527474, https://openalex.org/W2070401459, https://openalex.org/W2771316858, https://openalex.org/W2580466158, https://openalex.org/W2062775008, https://openalex.org/W2344266524, https://openalex.org/W2743034119, https://openalex.org/W2081574853, https://openalex.org/W2894873043, https://openalex.org/W2134603844 |
| referenced_works_count | 48 |
| abstract_inverted_index.a | 60, 105 |
| abstract_inverted_index.We | 185 |
| abstract_inverted_index.be | 63, 140, 155 |
| abstract_inverted_index.by | 22, 178 |
| abstract_inverted_index.is | 8, 59, 70, 76 |
| abstract_inverted_index.of | 4 |
| abstract_inverted_index.on | 135, 150 |
| abstract_inverted_index.to | 30, 39, 48, 62, 78, 90, 142, 157, 181 |
| abstract_inverted_index.we | 103 |
| abstract_inverted_index.ELM | 129 |
| abstract_inverted_index.SLA | 55, 183, 213 |
| abstract_inverted_index.The | 0, 65, 72, 121, 195 |
| abstract_inverted_index.and | 11, 54, 84, 130, 170, 192, 212 |
| abstract_inverted_index.ant | 109 |
| abstract_inverted_index.are | 98 |
| abstract_inverted_index.can | 17, 37, 88 |
| abstract_inverted_index.how | 47 |
| abstract_inverted_index.it. | 92 |
| abstract_inverted_index.one | 27 |
| abstract_inverted_index.our | 205 |
| abstract_inverted_index.the | 81, 94, 114, 125, 132, 136, 143, 147, 151, 175, 189 |
| abstract_inverted_index.data | 6 |
| abstract_inverted_index.each | 179 |
| abstract_inverted_index.easy | 77 |
| abstract_inverted_index.fall | 79 |
| abstract_inverted_index.from | 26 |
| abstract_inverted_index.have | 198 |
| abstract_inverted_index.help | 89 |
| abstract_inverted_index.high | 100 |
| abstract_inverted_index.host | 126, 138, 153, 160 |
| abstract_inverted_index.into | 80 |
| abstract_inverted_index.lead | 38 |
| abstract_inverted_index.more | 10, 12 |
| abstract_inverted_index.some | 85 |
| abstract_inverted_index.that | 200 |
| abstract_inverted_index.then | 131 |
| abstract_inverted_index.will | 139, 154 |
| abstract_inverted_index.with | 99, 113, 161, 188, 202 |
| abstract_inverted_index.(ELM) | 118 |
| abstract_inverted_index.(SLA) | 44 |
| abstract_inverted_index.Level | 42 |
| abstract_inverted_index.avoid | 91 |
| abstract_inverted_index.host, | 145 |
| abstract_inverted_index.issue | 3 |
| abstract_inverted_index.local | 82, 171 |
| abstract_inverted_index.lower | 106 |
| abstract_inverted_index.plans | 169 |
| abstract_inverted_index.shown | 199 |
| abstract_inverted_index.state | 127 |
| abstract_inverted_index.these | 203 |
| abstract_inverted_index.times | 211 |
| abstract_inverted_index.while | 146 |
| abstract_inverted_index.colony | 110 |
| abstract_inverted_index.energy | 1, 20, 52, 208 |
| abstract_inverted_index.higher | 162 |
| abstract_inverted_index.normal | 144 |
| abstract_inverted_index.reduce | 19, 182 |
| abstract_inverted_index.search | 172 |
| abstract_inverted_index.system | 111 |
| abstract_inverted_index.Extreme | 115 |
| abstract_inverted_index.Machine | 117 |
| abstract_inverted_index.Service | 41 |
| abstract_inverted_index.Virtual | 14 |
| abstract_inverted_index.another | 158 |
| abstract_inverted_index.balance | 49 |
| abstract_inverted_index.between | 50 |
| abstract_inverted_index.centers | 7 |
| abstract_inverted_index.compare | 186 |
| abstract_inverted_index.firstly | 123 |
| abstract_inverted_index.further | 173 |
| abstract_inverted_index.machine | 15, 29, 35, 67, 134, 149 |
| abstract_inverted_index.optimal | 83 |
| abstract_inverted_index.paradox | 61 |
| abstract_inverted_index.problem | 69 |
| abstract_inverted_index.propose | 104 |
| abstract_inverted_index.reduces | 207 |
| abstract_inverted_index.results | 176, 197 |
| abstract_inverted_index.virtual | 24, 34, 66, 133, 148 |
| abstract_inverted_index.However, | 32, 93 |
| abstract_inverted_index.Learning | 116 |
| abstract_inverted_index.Multiple | 164 |
| abstract_inverted_index.NP-hard. | 71 |
| abstract_inverted_index.another. | 31 |
| abstract_inverted_index.compared | 201 |
| abstract_inverted_index.existing | 95 |
| abstract_inverted_index.machines | 25 |
| abstract_inverted_index.migrated | 141 |
| abstract_inverted_index.obtained | 177 |
| abstract_inverted_index.physical | 28 |
| abstract_inverted_index.predicts | 124 |
| abstract_inverted_index.Agreement | 43 |
| abstract_inverted_index.ELM_MPACS | 187 |
| abstract_inverted_index.algorithm | 75, 112, 122, 206 |
| abstract_inverted_index.avoidance | 57 |
| abstract_inverted_index.construct | 167 |
| abstract_inverted_index.dangerous | 40 |
| abstract_inverted_index.effective | 51 |
| abstract_inverted_index.employing | 128 |
| abstract_inverted_index.excessive | 33 |
| abstract_inverted_index.heuristic | 74, 191 |
| abstract_inverted_index.mediated. | 64 |
| abstract_inverted_index.migrating | 23 |
| abstract_inverted_index.migration | 168, 210 |
| abstract_inverted_index.optimizes | 174 |
| abstract_inverted_index.Therefore, | 46, 102 |
| abstract_inverted_index.algorithms | 87, 97 |
| abstract_inverted_index.attention. | 13 |
| abstract_inverted_index.attracting | 9 |
| abstract_inverted_index.benchmark, | 190 |
| abstract_inverted_index.complexity | 107 |
| abstract_inverted_index.overloaded | 137 |
| abstract_inverted_index.population | 180 |
| abstract_inverted_index.prediction | 119 |
| abstract_inverted_index.violations | 56, 214 |
| abstract_inverted_index.algorithms, | 204 |
| abstract_inverted_index.algorithms. | 194 |
| abstract_inverted_index.complexity. | 101 |
| abstract_inverted_index.consumption | 2, 21, 53 |
| abstract_inverted_index.effectively | 58 |
| abstract_inverted_index.large-scale | 5 |
| abstract_inverted_index.populations | 165 |
| abstract_inverted_index.traditional | 73 |
| abstract_inverted_index.underloaded | 152, 159 |
| abstract_inverted_index.violations. | 45, 184 |
| abstract_inverted_index.(ELM_MPACS). | 120 |
| abstract_inverted_index.concurrently | 166 |
| abstract_inverted_index.consolidated | 156 |
| abstract_inverted_index.consumption, | 209 |
| abstract_inverted_index.effectively. | 215 |
| abstract_inverted_index.experimental | 196 |
| abstract_inverted_index.utilization. | 163 |
| abstract_inverted_index.consolidation | 16, 36, 68 |
| abstract_inverted_index.significantly | 18 |
| abstract_inverted_index.meta-heuristic | 86, 96, 193 |
| abstract_inverted_index.multi-population | 108 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.9200000166893005 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.96400318 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |