A visualized machine learning model using noninvasive parameters to differentiate men with and without prostatic carcinoma before biopsy Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-025-12765-2
This study aimed to create a visualized extreme gradient boosting (XGBOOST) model to distinguish prostatic carcinoma (PCA) from non-PCA using noninvasive prebiopsy parameters before biopsy. This was a cross-sectional study of 310 Chinese men who underwent prostate biopsy and were divided into PCA ( n = 126) and non-PCA ( n = 184) groups. The non-PCA patients were diagnosed with benign prostatic hyperplasia (BPH) based on biopsy results. The XGBOOST model was used to analyze 15 noninvasive prebiopsy parameters. The model performance was assessed by the area under the receiver operating characteristic curve (AUC) and compared with four other machine learning models (decision tree learning, lasso, neural network (NNET), and support vector machine (SVM)) and a logistic model. The logistic model identified serum thymidine kinase 1 (STK1p), total prostate-specific antigen (TPSA), and age as key prognostic factors. In the Lasso procedure, free prostate-specific antigen (FPSA) and free-to-total prostate-specific antigen (FTPSA) were also added to machine learning models. The XGBOOST model achieved an AUC of 0.965, which was significantly greater than those of other models (AUC = 0.708–0.817) and the logistic model (AUC = 0.813) ( P < 0.001). The 49 decision trees generated by the XGBOOST model were visualized to aid in decision making. This study successfully developed a visualized XGBOOST model with high accuracy in differentiating PCA from non-PCA using eight noninvasive predictors. This model could aid in the precise selection of high-risk PCA patients for biopsy, potentially minimizing unnecessary procedures and their associated costs.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-025-12765-2
- https://www.nature.com/articles/s41598-025-12765-2.pdf
- OA Status
- gold
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412676465
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412676465Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-025-12765-2Digital Object Identifier
- Title
-
A visualized machine learning model using noninvasive parameters to differentiate men with and without prostatic carcinoma before biopsyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-27Full publication date if available
- Authors
-
Wenting Zhou, Lin‐Hui Wang, Xue Zhang, Xiaohong Zou, Xuemei Du, Liru Luo, Xiaolan Ye, Shujing Li, Hong Lv, Yunheng Liu, Xiaoyang HuangList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-025-12765-2Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-025-12765-2.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-025-12765-2.pdfDirect OA link when available
- Concepts
-
Receiver operating characteristic, Biopsy, Logistic regression, Prostate cancer, Medicine, Prostate biopsy, Prostate-specific antigen, Artificial intelligence, Prostate, Hyperplasia, Machine learning, Support vector machine, Urology, Area under the curve, Computer science, Internal medicine, CancerTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412676465 |
|---|---|
| doi | https://doi.org/10.1038/s41598-025-12765-2 |
| ids.doi | https://doi.org/10.1038/s41598-025-12765-2 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40717135 |
| ids.openalex | https://openalex.org/W4412676465 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D008297 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Male |
| mesh[2].qualifier_ui | Q000175 |
| mesh[2].descriptor_ui | D011471 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | diagnosis |
| mesh[2].descriptor_name | Prostatic Neoplasms |
| mesh[3].qualifier_ui | Q000473 |
| mesh[3].descriptor_ui | D011471 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | pathology |
| mesh[3].descriptor_name | Prostatic Neoplasms |
| mesh[4].qualifier_ui | Q000097 |
| mesh[4].descriptor_ui | D011471 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | blood |
| mesh[4].descriptor_name | Prostatic Neoplasms |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000069550 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Machine Learning |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D008875 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Middle Aged |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000368 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Aged |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D001706 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Biopsy |
| mesh[9].qualifier_ui | Q000097 |
| mesh[9].descriptor_ui | D017430 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | blood |
| mesh[9].descriptor_name | Prostate-Specific Antigen |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D003430 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Cross-Sectional Studies |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D012372 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | ROC Curve |
| mesh[12].qualifier_ui | Q000175 |
| mesh[12].descriptor_ui | D011470 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | diagnosis |
| mesh[12].descriptor_name | Prostatic Hyperplasia |
| mesh[13].qualifier_ui | Q000473 |
| mesh[13].descriptor_ui | D011470 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | pathology |
| mesh[13].descriptor_name | Prostatic Hyperplasia |
| mesh[14].qualifier_ui | Q000473 |
| mesh[14].descriptor_ui | D011467 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | pathology |
| mesh[14].descriptor_name | Prostate |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D016571 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Neural Networks, Computer |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D016015 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Logistic Models |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D006801 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Humans |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D008297 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Male |
| mesh[19].qualifier_ui | Q000175 |
| mesh[19].descriptor_ui | D011471 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | diagnosis |
| mesh[19].descriptor_name | Prostatic Neoplasms |
| mesh[20].qualifier_ui | Q000473 |
| mesh[20].descriptor_ui | D011471 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | pathology |
| mesh[20].descriptor_name | Prostatic Neoplasms |
| mesh[21].qualifier_ui | Q000097 |
| mesh[21].descriptor_ui | D011471 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | blood |
| mesh[21].descriptor_name | Prostatic Neoplasms |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D000069550 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Machine Learning |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D008875 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Middle Aged |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D000368 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Aged |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D001706 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Biopsy |
| mesh[26].qualifier_ui | Q000097 |
| mesh[26].descriptor_ui | D017430 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | blood |
| mesh[26].descriptor_name | Prostate-Specific Antigen |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D003430 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Cross-Sectional Studies |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D012372 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | ROC Curve |
| mesh[29].qualifier_ui | Q000175 |
| mesh[29].descriptor_ui | D011470 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | diagnosis |
| mesh[29].descriptor_name | Prostatic Hyperplasia |
| mesh[30].qualifier_ui | Q000473 |
| mesh[30].descriptor_ui | D011470 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | pathology |
| mesh[30].descriptor_name | Prostatic Hyperplasia |
| mesh[31].qualifier_ui | Q000473 |
| mesh[31].descriptor_ui | D011467 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | pathology |
| mesh[31].descriptor_name | Prostate |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D016571 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Neural Networks, Computer |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D016015 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Logistic Models |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D006801 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Humans |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D008297 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Male |
| mesh[36].qualifier_ui | Q000175 |
| mesh[36].descriptor_ui | D011471 |
| mesh[36].is_major_topic | True |
| mesh[36].qualifier_name | diagnosis |
| mesh[36].descriptor_name | Prostatic Neoplasms |
| mesh[37].qualifier_ui | Q000473 |
| mesh[37].descriptor_ui | D011471 |
| mesh[37].is_major_topic | True |
| mesh[37].qualifier_name | pathology |
| mesh[37].descriptor_name | Prostatic Neoplasms |
| mesh[38].qualifier_ui | Q000097 |
| mesh[38].descriptor_ui | D011471 |
| mesh[38].is_major_topic | True |
| mesh[38].qualifier_name | blood |
| mesh[38].descriptor_name | Prostatic Neoplasms |
| mesh[39].qualifier_ui | |
| mesh[39].descriptor_ui | D000069550 |
| mesh[39].is_major_topic | True |
| mesh[39].qualifier_name | |
| mesh[39].descriptor_name | Machine Learning |
| mesh[40].qualifier_ui | |
| mesh[40].descriptor_ui | D008875 |
| mesh[40].is_major_topic | False |
| mesh[40].qualifier_name | |
| mesh[40].descriptor_name | Middle Aged |
| mesh[41].qualifier_ui | |
| mesh[41].descriptor_ui | D000368 |
| mesh[41].is_major_topic | False |
| mesh[41].qualifier_name | |
| mesh[41].descriptor_name | Aged |
| mesh[42].qualifier_ui | |
| mesh[42].descriptor_ui | D001706 |
| mesh[42].is_major_topic | False |
| mesh[42].qualifier_name | |
| mesh[42].descriptor_name | Biopsy |
| mesh[43].qualifier_ui | Q000097 |
| mesh[43].descriptor_ui | D017430 |
| mesh[43].is_major_topic | False |
| mesh[43].qualifier_name | blood |
| mesh[43].descriptor_name | Prostate-Specific Antigen |
| mesh[44].qualifier_ui | |
| mesh[44].descriptor_ui | D003430 |
| mesh[44].is_major_topic | False |
| mesh[44].qualifier_name | |
| mesh[44].descriptor_name | Cross-Sectional Studies |
| mesh[45].qualifier_ui | |
| mesh[45].descriptor_ui | D012372 |
| mesh[45].is_major_topic | False |
| mesh[45].qualifier_name | |
| mesh[45].descriptor_name | ROC Curve |
| mesh[46].qualifier_ui | Q000175 |
| mesh[46].descriptor_ui | D011470 |
| mesh[46].is_major_topic | False |
| mesh[46].qualifier_name | diagnosis |
| mesh[46].descriptor_name | Prostatic Hyperplasia |
| mesh[47].qualifier_ui | Q000473 |
| mesh[47].descriptor_ui | D011470 |
| mesh[47].is_major_topic | False |
| mesh[47].qualifier_name | pathology |
| mesh[47].descriptor_name | Prostatic Hyperplasia |
| mesh[48].qualifier_ui | Q000473 |
| mesh[48].descriptor_ui | D011467 |
| mesh[48].is_major_topic | False |
| mesh[48].qualifier_name | pathology |
| mesh[48].descriptor_name | Prostate |
| mesh[49].qualifier_ui | |
| mesh[49].descriptor_ui | D016571 |
| mesh[49].is_major_topic | False |
| mesh[49].qualifier_name | |
| mesh[49].descriptor_name | Neural Networks, Computer |
| type | article |
| title | A visualized machine learning model using noninvasive parameters to differentiate men with and without prostatic carcinoma before biopsy |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 27357 |
| biblio.first_page | 27357 |
| topics[0].id | https://openalex.org/T10124 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2740 |
| topics[0].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[0].display_name | Prostate Cancer Diagnosis and Treatment |
| topics[1].id | https://openalex.org/T10543 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2740 |
| topics[1].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[1].display_name | Prostate Cancer Treatment and Research |
| topics[2].id | https://openalex.org/T10458 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9496999979019165 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2746 |
| topics[2].subfield.display_name | Surgery |
| topics[2].display_name | Bladder and Urothelial Cancer Treatments |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C58471807 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6676254868507385 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q327120 |
| concepts[0].display_name | Receiver operating characteristic |
| concepts[1].id | https://openalex.org/C2775934546 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5724193453788757 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q179991 |
| concepts[1].display_name | Biopsy |
| concepts[2].id | https://openalex.org/C151956035 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5633146166801453 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[2].display_name | Logistic regression |
| concepts[3].id | https://openalex.org/C2780192828 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5512226819992065 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q181257 |
| concepts[3].display_name | Prostate cancer |
| concepts[4].id | https://openalex.org/C71924100 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5391249060630798 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[4].display_name | Medicine |
| concepts[5].id | https://openalex.org/C2781217009 |
| concepts[5].level | 4 |
| concepts[5].score | 0.5340633988380432 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4086927 |
| concepts[5].display_name | Prostate biopsy |
| concepts[6].id | https://openalex.org/C2781406297 |
| concepts[6].level | 4 |
| concepts[6].score | 0.5210899114608765 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q409450 |
| concepts[6].display_name | Prostate-specific antigen |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5179587602615356 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C2776235491 |
| concepts[8].level | 3 |
| concepts[8].score | 0.5058112144470215 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9625 |
| concepts[8].display_name | Prostate |
| concepts[9].id | https://openalex.org/C2777562237 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4764942526817322 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q835051 |
| concepts[9].display_name | Hyperplasia |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4747251272201538 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C12267149 |
| concepts[11].level | 2 |
| concepts[11].score | 0.44506287574768066 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[11].display_name | Support vector machine |
| concepts[12].id | https://openalex.org/C126894567 |
| concepts[12].level | 1 |
| concepts[12].score | 0.4414663016796112 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q105650 |
| concepts[12].display_name | Urology |
| concepts[13].id | https://openalex.org/C76318530 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4152795076370239 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q16833590 |
| concepts[13].display_name | Area under the curve |
| concepts[14].id | https://openalex.org/C41008148 |
| concepts[14].level | 0 |
| concepts[14].score | 0.3863622844219208 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[14].display_name | Computer science |
| concepts[15].id | https://openalex.org/C126322002 |
| concepts[15].level | 1 |
| concepts[15].score | 0.2934451997280121 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[15].display_name | Internal medicine |
| concepts[16].id | https://openalex.org/C121608353 |
| concepts[16].level | 2 |
| concepts[16].score | 0.2605818510055542 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[16].display_name | Cancer |
| keywords[0].id | https://openalex.org/keywords/receiver-operating-characteristic |
| keywords[0].score | 0.6676254868507385 |
| keywords[0].display_name | Receiver operating characteristic |
| keywords[1].id | https://openalex.org/keywords/biopsy |
| keywords[1].score | 0.5724193453788757 |
| keywords[1].display_name | Biopsy |
| keywords[2].id | https://openalex.org/keywords/logistic-regression |
| keywords[2].score | 0.5633146166801453 |
| keywords[2].display_name | Logistic regression |
| keywords[3].id | https://openalex.org/keywords/prostate-cancer |
| keywords[3].score | 0.5512226819992065 |
| keywords[3].display_name | Prostate cancer |
| keywords[4].id | https://openalex.org/keywords/medicine |
| keywords[4].score | 0.5391249060630798 |
| keywords[4].display_name | Medicine |
| keywords[5].id | https://openalex.org/keywords/prostate-biopsy |
| keywords[5].score | 0.5340633988380432 |
| keywords[5].display_name | Prostate biopsy |
| keywords[6].id | https://openalex.org/keywords/prostate-specific-antigen |
| keywords[6].score | 0.5210899114608765 |
| keywords[6].display_name | Prostate-specific antigen |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.5179587602615356 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/prostate |
| keywords[8].score | 0.5058112144470215 |
| keywords[8].display_name | Prostate |
| keywords[9].id | https://openalex.org/keywords/hyperplasia |
| keywords[9].score | 0.4764942526817322 |
| keywords[9].display_name | Hyperplasia |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.4747251272201538 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/support-vector-machine |
| keywords[11].score | 0.44506287574768066 |
| keywords[11].display_name | Support vector machine |
| keywords[12].id | https://openalex.org/keywords/urology |
| keywords[12].score | 0.4414663016796112 |
| keywords[12].display_name | Urology |
| keywords[13].id | https://openalex.org/keywords/area-under-the-curve |
| keywords[13].score | 0.4152795076370239 |
| keywords[13].display_name | Area under the curve |
| keywords[14].id | https://openalex.org/keywords/computer-science |
| keywords[14].score | 0.3863622844219208 |
| keywords[14].display_name | Computer science |
| keywords[15].id | https://openalex.org/keywords/internal-medicine |
| keywords[15].score | 0.2934451997280121 |
| keywords[15].display_name | Internal medicine |
| keywords[16].id | https://openalex.org/keywords/cancer |
| keywords[16].score | 0.2605818510055542 |
| keywords[16].display_name | Cancer |
| language | en |
| locations[0].id | doi:10.1038/s41598-025-12765-2 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-025-12765-2.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-025-12765-2 |
| locations[1].id | pmid:40717135 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40717135 |
| locations[2].id | pmh:oai:doaj.org/article:722603f36fbd4d7ca3051e88760ed6e6 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 15, Iss 1, Pp 1-10 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/722603f36fbd4d7ca3051e88760ed6e6 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5071766347 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2610-7634 |
| authorships[0].author.display_name | Wenting Zhou |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Pathology, The First People's Hospital of Longquanyi District, Chengdu, 610100, China. |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wenting Zhou |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Pathology, The First People's Hospital of Longquanyi District, Chengdu, 610100, China. |
| authorships[1].author.id | https://openalex.org/A5100617468 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5295-324X |
| authorships[1].author.display_name | Lin‐Hui Wang |
| authorships[1].affiliations[0].raw_affiliation_string | Department of General Practice, Tong'an Community Health Service Center in Longquanyi District, Chengdu, China. |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Linhui Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of General Practice, Tong'an Community Health Service Center in Longquanyi District, Chengdu, China. |
| authorships[2].author.id | https://openalex.org/A5100445868 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0940-037X |
| authorships[2].author.display_name | Xue Zhang |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Pathology, The First People's Hospital of Longquanyi District, Chengdu, 610100, China. |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xue Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Pathology, The First People's Hospital of Longquanyi District, Chengdu, 610100, China. |
| authorships[3].author.id | https://openalex.org/A5008014276 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Xiaohong Zou |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Pathology, The First People's Hospital of Longquanyi District, Chengdu, 610100, China. |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xiaohong Zou |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Pathology, The First People's Hospital of Longquanyi District, Chengdu, 610100, China. |
| authorships[4].author.id | https://openalex.org/A5100947255 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Xuemei Du |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Pathology, The First People's Hospital of Longquanyi District, Chengdu, 610100, China. |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xuemei Du |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Pathology, The First People's Hospital of Longquanyi District, Chengdu, 610100, China. |
| authorships[5].author.id | https://openalex.org/A5020989451 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2958-4500 |
| authorships[5].author.display_name | Liru Luo |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Pathology, The First People's Hospital of Longquanyi District, Chengdu, 610100, China. |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Liru Luo |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Pathology, The First People's Hospital of Longquanyi District, Chengdu, 610100, China. |
| authorships[6].author.id | https://openalex.org/A5041999825 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Xiaolan Ye |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Pathology, The First People's Hospital of Longquanyi District, Chengdu, 610100, China. |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Xiaolan Ye |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Pathology, The First People's Hospital of Longquanyi District, Chengdu, 610100, China. |
| authorships[7].author.id | https://openalex.org/A5100437425 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-3104-4255 |
| authorships[7].author.display_name | Shujing Li |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I191996457, https://openalex.org/I4210097509, https://openalex.org/I87780372 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Urinary and Neohropathy Center, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China. |
| authorships[7].institutions[0].id | https://openalex.org/I87780372 |
| authorships[7].institutions[0].ror | https://ror.org/017z00e58 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I87780372 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Chongqing Medical University |
| authorships[7].institutions[1].id | https://openalex.org/I191996457 |
| authorships[7].institutions[1].ror | https://ror.org/04c8eg608 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I191996457 |
| authorships[7].institutions[1].country_code | CN |
| authorships[7].institutions[1].display_name | Dalian Medical University |
| authorships[7].institutions[2].id | https://openalex.org/I4210097509 |
| authorships[7].institutions[2].ror | https://ror.org/00r67fz39 |
| authorships[7].institutions[2].type | healthcare |
| authorships[7].institutions[2].lineage | https://openalex.org/I4210097509 |
| authorships[7].institutions[2].country_code | CN |
| authorships[7].institutions[2].display_name | Second Affiliated Hospital of Chongqing Medical University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Shujing Li |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Urinary and Neohropathy Center, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China. |
| authorships[8].author.id | https://openalex.org/A5101182255 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Hong Lv |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Pathology, The First People's Hospital of Longquanyi District, Chengdu, 610100, China. [email protected]. |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Hong Lv |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Pathology, The First People's Hospital of Longquanyi District, Chengdu, 610100, China. [email protected]. |
| authorships[9].author.id | https://openalex.org/A5033628081 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Yunheng Liu |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Pathology, The First People's Hospital of Longquanyi District, Chengdu, 610100, China. [email protected]. |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Yuanfu Liu |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Pathology, The First People's Hospital of Longquanyi District, Chengdu, 610100, China. [email protected]. |
| authorships[10].author.id | https://openalex.org/A5101688592 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-9703-5979 |
| authorships[10].author.display_name | Xiaoyang Huang |
| authorships[10].affiliations[0].raw_affiliation_string | , Shenzhen, 518110, China. [email protected]. |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Xiaoyang Huang |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | , Shenzhen, 518110, China. [email protected]. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-025-12765-2.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A visualized machine learning model using noninvasive parameters to differentiate men with and without prostatic carcinoma before biopsy |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10124 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2740 |
| primary_topic.subfield.display_name | Pulmonary and Respiratory Medicine |
| primary_topic.display_name | Prostate Cancer Diagnosis and Treatment |
| related_works | https://openalex.org/W3030915957, https://openalex.org/W2373132269, https://openalex.org/W3108466129, https://openalex.org/W2051966709, https://openalex.org/W2392162854, https://openalex.org/W2008911041, https://openalex.org/W2744023513, https://openalex.org/W2949466702, https://openalex.org/W2390926424, https://openalex.org/W4400418921 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1038/s41598-025-12765-2 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-025-12765-2.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-025-12765-2 |
| primary_location.id | doi:10.1038/s41598-025-12765-2 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-025-12765-2.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-025-12765-2 |
| publication_date | 2025-07-27 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3128646645, https://openalex.org/W4211030993, https://openalex.org/W4210496824, https://openalex.org/W4210440569, https://openalex.org/W4281638472, https://openalex.org/W3190109435, https://openalex.org/W4307903450, https://openalex.org/W2085844413, https://openalex.org/W2063922332, https://openalex.org/W2888217755, https://openalex.org/W2886522935, https://openalex.org/W4361225826, https://openalex.org/W3034862896, https://openalex.org/W2923153978, https://openalex.org/W2953358308, https://openalex.org/W2068841136, https://openalex.org/W2064584775, https://openalex.org/W3027164091, https://openalex.org/W4283706249, https://openalex.org/W4391226901, https://openalex.org/W2940128147 |
| referenced_works_count | 21 |
| abstract_inverted_index.( | 44, 50, 185 |
| abstract_inverted_index.1 | 126 |
| abstract_inverted_index.= | 46, 52, 176, 183 |
| abstract_inverted_index.P | 186 |
| abstract_inverted_index.a | 6, 28, 116, 209 |
| abstract_inverted_index.n | 45, 51 |
| abstract_inverted_index.15 | 76 |
| abstract_inverted_index.49 | 190 |
| abstract_inverted_index.In | 138 |
| abstract_inverted_index.an | 162 |
| abstract_inverted_index.as | 134 |
| abstract_inverted_index.by | 85, 194 |
| abstract_inverted_index.in | 202, 216, 229 |
| abstract_inverted_index.of | 31, 164, 172, 233 |
| abstract_inverted_index.on | 66 |
| abstract_inverted_index.to | 4, 13, 74, 154, 200 |
| abstract_inverted_index.310 | 32 |
| abstract_inverted_index.AUC | 163 |
| abstract_inverted_index.PCA | 43, 218, 235 |
| abstract_inverted_index.The | 55, 69, 80, 119, 158, 189 |
| abstract_inverted_index.age | 133 |
| abstract_inverted_index.aid | 201, 228 |
| abstract_inverted_index.and | 39, 48, 95, 110, 115, 132, 146, 178, 243 |
| abstract_inverted_index.for | 237 |
| abstract_inverted_index.key | 135 |
| abstract_inverted_index.men | 34 |
| abstract_inverted_index.the | 86, 89, 139, 179, 195, 230 |
| abstract_inverted_index.was | 27, 72, 83, 167 |
| abstract_inverted_index.who | 35 |
| abstract_inverted_index.< | 187 |
| abstract_inverted_index.(AUC | 175, 182 |
| abstract_inverted_index.126) | 47 |
| abstract_inverted_index.184) | 53 |
| abstract_inverted_index.This | 1, 26, 205, 225 |
| abstract_inverted_index.also | 152 |
| abstract_inverted_index.area | 87 |
| abstract_inverted_index.four | 98 |
| abstract_inverted_index.free | 142 |
| abstract_inverted_index.from | 18, 219 |
| abstract_inverted_index.high | 214 |
| abstract_inverted_index.into | 42 |
| abstract_inverted_index.than | 170 |
| abstract_inverted_index.tree | 104 |
| abstract_inverted_index.used | 73 |
| abstract_inverted_index.were | 40, 58, 151, 198 |
| abstract_inverted_index.with | 60, 97, 213 |
| abstract_inverted_index.(AUC) | 94 |
| abstract_inverted_index.(BPH) | 64 |
| abstract_inverted_index.(PCA) | 17 |
| abstract_inverted_index.Lasso | 140 |
| abstract_inverted_index.added | 153 |
| abstract_inverted_index.aimed | 3 |
| abstract_inverted_index.based | 65 |
| abstract_inverted_index.could | 227 |
| abstract_inverted_index.curve | 93 |
| abstract_inverted_index.eight | 222 |
| abstract_inverted_index.model | 12, 71, 81, 121, 160, 181, 197, 212, 226 |
| abstract_inverted_index.other | 99, 173 |
| abstract_inverted_index.serum | 123 |
| abstract_inverted_index.study | 2, 30, 206 |
| abstract_inverted_index.their | 244 |
| abstract_inverted_index.those | 171 |
| abstract_inverted_index.total | 128 |
| abstract_inverted_index.trees | 192 |
| abstract_inverted_index.under | 88 |
| abstract_inverted_index.using | 20, 221 |
| abstract_inverted_index.which | 166 |
| abstract_inverted_index.(FPSA) | 145 |
| abstract_inverted_index.(SVM)) | 114 |
| abstract_inverted_index.0.813) | 184 |
| abstract_inverted_index.0.965, | 165 |
| abstract_inverted_index.before | 24 |
| abstract_inverted_index.benign | 61 |
| abstract_inverted_index.biopsy | 38, 67 |
| abstract_inverted_index.costs. | 246 |
| abstract_inverted_index.create | 5 |
| abstract_inverted_index.kinase | 125 |
| abstract_inverted_index.lasso, | 106 |
| abstract_inverted_index.model. | 118 |
| abstract_inverted_index.models | 102, 174 |
| abstract_inverted_index.neural | 107 |
| abstract_inverted_index.vector | 112 |
| abstract_inverted_index.(FTPSA) | 150 |
| abstract_inverted_index.(NNET), | 109 |
| abstract_inverted_index.(TPSA), | 131 |
| abstract_inverted_index.0.001). | 188 |
| abstract_inverted_index.Chinese | 33 |
| abstract_inverted_index.XGBOOST | 70, 159, 196, 211 |
| abstract_inverted_index.analyze | 75 |
| abstract_inverted_index.antigen | 130, 144, 149 |
| abstract_inverted_index.biopsy, | 238 |
| abstract_inverted_index.biopsy. | 25 |
| abstract_inverted_index.divided | 41 |
| abstract_inverted_index.extreme | 8 |
| abstract_inverted_index.greater | 169 |
| abstract_inverted_index.groups. | 54 |
| abstract_inverted_index.machine | 100, 113, 155 |
| abstract_inverted_index.making. | 204 |
| abstract_inverted_index.models. | 157 |
| abstract_inverted_index.network | 108 |
| abstract_inverted_index.non-PCA | 19, 49, 56, 220 |
| abstract_inverted_index.precise | 231 |
| abstract_inverted_index.support | 111 |
| abstract_inverted_index.(STK1p), | 127 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.accuracy | 215 |
| abstract_inverted_index.achieved | 161 |
| abstract_inverted_index.assessed | 84 |
| abstract_inverted_index.boosting | 10 |
| abstract_inverted_index.compared | 96 |
| abstract_inverted_index.decision | 191, 203 |
| abstract_inverted_index.factors. | 137 |
| abstract_inverted_index.gradient | 9 |
| abstract_inverted_index.learning | 101, 156 |
| abstract_inverted_index.logistic | 117, 120, 180 |
| abstract_inverted_index.patients | 57, 236 |
| abstract_inverted_index.prostate | 37 |
| abstract_inverted_index.receiver | 90 |
| abstract_inverted_index.results. | 68 |
| abstract_inverted_index.(XGBOOST) | 11 |
| abstract_inverted_index.(decision | 103 |
| abstract_inverted_index.carcinoma | 16 |
| abstract_inverted_index.developed | 208 |
| abstract_inverted_index.diagnosed | 59 |
| abstract_inverted_index.generated | 193 |
| abstract_inverted_index.high-risk | 234 |
| abstract_inverted_index.learning, | 105 |
| abstract_inverted_index.operating | 91 |
| abstract_inverted_index.prebiopsy | 22, 78 |
| abstract_inverted_index.prostatic | 15, 62 |
| abstract_inverted_index.selection | 232 |
| abstract_inverted_index.thymidine | 124 |
| abstract_inverted_index.underwent | 36 |
| abstract_inverted_index.associated | 245 |
| abstract_inverted_index.identified | 122 |
| abstract_inverted_index.minimizing | 240 |
| abstract_inverted_index.parameters | 23 |
| abstract_inverted_index.procedure, | 141 |
| abstract_inverted_index.procedures | 242 |
| abstract_inverted_index.prognostic | 136 |
| abstract_inverted_index.visualized | 7, 199, 210 |
| abstract_inverted_index.distinguish | 14 |
| abstract_inverted_index.hyperplasia | 63 |
| abstract_inverted_index.noninvasive | 21, 77, 223 |
| abstract_inverted_index.parameters. | 79 |
| abstract_inverted_index.performance | 82 |
| abstract_inverted_index.potentially | 239 |
| abstract_inverted_index.predictors. | 224 |
| abstract_inverted_index.unnecessary | 241 |
| abstract_inverted_index.successfully | 207 |
| abstract_inverted_index.free-to-total | 147 |
| abstract_inverted_index.significantly | 168 |
| abstract_inverted_index.0.708–0.817) | 177 |
| abstract_inverted_index.characteristic | 92 |
| abstract_inverted_index.cross-sectional | 29 |
| abstract_inverted_index.differentiating | 217 |
| abstract_inverted_index.prostate-specific | 129, 143, 148 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 11 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7699999809265137 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.44582188 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |