A voice-based algorithm can predict type 2 diabetes status in USA adults: Findings from the Colive Voice study Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pdig.0000679
The pressing need to reduce undiagnosed type 2 diabetes (T2D) globally calls for innovative screening approaches. This study investigates the potential of using a voice-based algorithm to predict T2D status in adults, as the first step towards developing a non-invasive and scalable screening method. We analyzed pre-specified text recordings from 607 US participants from the Colive Voice study registered on ClinicalTrials.gov (NCT04848623). Using hybrid BYOL-S/CvT embeddings, we constructed gender-specific algorithms to predict T2D status, evaluated through cross-validation based on accuracy, specificity, sensitivity, and Area Under the Curve (AUC). The best models were stratified by key factors such as age, BMI, and hypertension, and compared to the American Diabetes Association (ADA) score for T2D risk assessment using Bland-Altman analysis. The voice-based algorithms demonstrated good predictive capacity (AUC = 75% for males, 71% for females), correctly predicting 71% of male and 66% of female T2D cases. Performance improved in females aged 60 years or older (AUC = 74%) and individuals with hypertension (AUC = 75%), with an overall agreement above 93% with the ADA risk score. Our findings suggest that voice-based algorithms could serve as a more accessible, cost-effective, and noninvasive screening tool for T2D. While these results are promising, further validation is needed, particularly for early-stage T2D cases and more diverse populations.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1371/journal.pdig.0000679
- OA Status
- gold
- Cited By
- 6
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405614201
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405614201Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pdig.0000679Digital Object Identifier
- Title
-
A voice-based algorithm can predict type 2 diabetes status in USA adults: Findings from the Colive Voice studyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-19Full publication date if available
- Authors
-
Abir Elbéji, Mégane Pizzimenti, Gloria Aguayo, Aurélie Fischer, H. Ayadi, Franck Mauvais‐Jarvis, Jean‐Pierre Riveline, Vladimir Despotović, Guy FagherazziList of authors in order
- Landing page
-
https://doi.org/10.1371/journal.pdig.0000679Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1371/journal.pdig.0000679Direct OA link when available
- Concepts
-
Type 2 diabetes, Algorithm, Medicine, Receiver operating characteristic, Diabetes mellitus, Machine learning, Area under the curve, Scalability, Computer science, Internal medicine, Endocrinology, DatabaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405614201 |
|---|---|
| doi | https://doi.org/10.1371/journal.pdig.0000679 |
| ids.doi | https://doi.org/10.1371/journal.pdig.0000679 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39700066 |
| ids.openalex | https://openalex.org/W4405614201 |
| fwci | 3.83267129 |
| type | article |
| title | A voice-based algorithm can predict type 2 diabetes status in USA adults: Findings from the Colive Voice study |
| biblio.issue | 12 |
| biblio.volume | 3 |
| biblio.last_page | e0000679 |
| biblio.first_page | e0000679 |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9926999807357788 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| topics[1].id | https://openalex.org/T13522 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.989799976348877 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2705 |
| topics[1].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[1].display_name | Cardiovascular Health and Risk Factors |
| topics[2].id | https://openalex.org/T10027 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9817000031471252 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2712 |
| topics[2].subfield.display_name | Endocrinology, Diabetes and Metabolism |
| topics[2].display_name | Diabetes, Cardiovascular Risks, and Lipoproteins |
| is_xpac | False |
| apc_list.value | 2575 |
| apc_list.currency | USD |
| apc_list.value_usd | 2575 |
| apc_paid.value | 2575 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2575 |
| concepts[0].id | https://openalex.org/C2777180221 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6598053574562073 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3025883 |
| concepts[0].display_name | Type 2 diabetes |
| concepts[1].id | https://openalex.org/C11413529 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6588529944419861 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[1].display_name | Algorithm |
| concepts[2].id | https://openalex.org/C71924100 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5483534932136536 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[2].display_name | Medicine |
| concepts[3].id | https://openalex.org/C58471807 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5194017887115479 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q327120 |
| concepts[3].display_name | Receiver operating characteristic |
| concepts[4].id | https://openalex.org/C555293320 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5130199790000916 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12206 |
| concepts[4].display_name | Diabetes mellitus |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4817783534526825 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C76318530 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43158769607543945 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q16833590 |
| concepts[6].display_name | Area under the curve |
| concepts[7].id | https://openalex.org/C48044578 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4140251576900482 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[7].display_name | Scalability |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3616293668746948 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C126322002 |
| concepts[9].level | 1 |
| concepts[9].score | 0.30314141511917114 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[9].display_name | Internal medicine |
| concepts[10].id | https://openalex.org/C134018914 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q162606 |
| concepts[10].display_name | Endocrinology |
| concepts[11].id | https://openalex.org/C77088390 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[11].display_name | Database |
| keywords[0].id | https://openalex.org/keywords/type-2-diabetes |
| keywords[0].score | 0.6598053574562073 |
| keywords[0].display_name | Type 2 diabetes |
| keywords[1].id | https://openalex.org/keywords/algorithm |
| keywords[1].score | 0.6588529944419861 |
| keywords[1].display_name | Algorithm |
| keywords[2].id | https://openalex.org/keywords/medicine |
| keywords[2].score | 0.5483534932136536 |
| keywords[2].display_name | Medicine |
| keywords[3].id | https://openalex.org/keywords/receiver-operating-characteristic |
| keywords[3].score | 0.5194017887115479 |
| keywords[3].display_name | Receiver operating characteristic |
| keywords[4].id | https://openalex.org/keywords/diabetes-mellitus |
| keywords[4].score | 0.5130199790000916 |
| keywords[4].display_name | Diabetes mellitus |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.4817783534526825 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/area-under-the-curve |
| keywords[6].score | 0.43158769607543945 |
| keywords[6].display_name | Area under the curve |
| keywords[7].id | https://openalex.org/keywords/scalability |
| keywords[7].score | 0.4140251576900482 |
| keywords[7].display_name | Scalability |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.3616293668746948 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/internal-medicine |
| keywords[9].score | 0.30314141511917114 |
| keywords[9].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.1371/journal.pdig.0000679 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210221150 |
| locations[0].source.issn | 2767-3170 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2767-3170 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PLOS Digital Health |
| locations[0].source.host_organization | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_name | Public Library of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315706 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PLOS Digital Health |
| locations[0].landing_page_url | https://doi.org/10.1371/journal.pdig.0000679 |
| locations[1].id | pmid:39700066 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PLOS digital health |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39700066 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11658629 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | PLOS Digit Health |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11658629 |
| locations[3].id | pmh:oai:doaj.org/article:949064a1d87c43309fba4901d3efedd2 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].source.host_organization_lineage | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | PLOS Digital Health, Vol 3, Iss 12, p e0000679 (2024) |
| locations[3].landing_page_url | https://doaj.org/article/949064a1d87c43309fba4901d3efedd2 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5044547931 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5293-4337 |
| authorships[0].author.display_name | Abir Elbéji |
| authorships[0].countries | LU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210101141 |
| authorships[0].affiliations[0].raw_affiliation_string | Deep Digital Phenotyping Research Unit. Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, L-1445 Strassen, Luxembourg |
| authorships[0].institutions[0].id | https://openalex.org/I4210101141 |
| authorships[0].institutions[0].ror | https://ror.org/012m8gv78 |
| authorships[0].institutions[0].type | nonprofit |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210101141 |
| authorships[0].institutions[0].country_code | LU |
| authorships[0].institutions[0].display_name | Luxembourg Institute of Health |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Abir Elbéji |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Deep Digital Phenotyping Research Unit. Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, L-1445 Strassen, Luxembourg |
| authorships[1].author.id | https://openalex.org/A5053123487 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Mégane Pizzimenti |
| authorships[1].countries | LU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210101141 |
| authorships[1].affiliations[0].raw_affiliation_string | Deep Digital Phenotyping Research Unit. Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, L-1445 Strassen, Luxembourg |
| authorships[1].institutions[0].id | https://openalex.org/I4210101141 |
| authorships[1].institutions[0].ror | https://ror.org/012m8gv78 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210101141 |
| authorships[1].institutions[0].country_code | LU |
| authorships[1].institutions[0].display_name | Luxembourg Institute of Health |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mégane Pizzimenti |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Deep Digital Phenotyping Research Unit. Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, L-1445 Strassen, Luxembourg |
| authorships[2].author.id | https://openalex.org/A5088101254 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5625-1664 |
| authorships[2].author.display_name | Gloria Aguayo |
| authorships[2].countries | LU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210101141 |
| authorships[2].affiliations[0].raw_affiliation_string | Deep Digital Phenotyping Research Unit. Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, L-1445 Strassen, Luxembourg |
| authorships[2].institutions[0].id | https://openalex.org/I4210101141 |
| authorships[2].institutions[0].ror | https://ror.org/012m8gv78 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210101141 |
| authorships[2].institutions[0].country_code | LU |
| authorships[2].institutions[0].display_name | Luxembourg Institute of Health |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gloria Aguayo |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Deep Digital Phenotyping Research Unit. Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, L-1445 Strassen, Luxembourg |
| authorships[3].author.id | https://openalex.org/A5064499846 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2822-2874 |
| authorships[3].author.display_name | Aurélie Fischer |
| authorships[3].countries | LU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210101141 |
| authorships[3].affiliations[0].raw_affiliation_string | Deep Digital Phenotyping Research Unit. Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, L-1445 Strassen, Luxembourg |
| authorships[3].institutions[0].id | https://openalex.org/I4210101141 |
| authorships[3].institutions[0].ror | https://ror.org/012m8gv78 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210101141 |
| authorships[3].institutions[0].country_code | LU |
| authorships[3].institutions[0].display_name | Luxembourg Institute of Health |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Aurélie Fischer |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Deep Digital Phenotyping Research Unit. Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, L-1445 Strassen, Luxembourg |
| authorships[4].author.id | https://openalex.org/A5001021555 |
| authorships[4].author.orcid | https://orcid.org/0009-0007-2214-6907 |
| authorships[4].author.display_name | H. Ayadi |
| authorships[4].countries | LU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210101141 |
| authorships[4].affiliations[0].raw_affiliation_string | Deep Digital Phenotyping Research Unit. Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, L-1445 Strassen, Luxembourg |
| authorships[4].institutions[0].id | https://openalex.org/I4210101141 |
| authorships[4].institutions[0].ror | https://ror.org/012m8gv78 |
| authorships[4].institutions[0].type | nonprofit |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210101141 |
| authorships[4].institutions[0].country_code | LU |
| authorships[4].institutions[0].display_name | Luxembourg Institute of Health |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hanin Ayadi |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Deep Digital Phenotyping Research Unit. Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, L-1445 Strassen, Luxembourg |
| authorships[5].author.id | https://openalex.org/A5051767029 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0874-0754 |
| authorships[5].author.display_name | Franck Mauvais‐Jarvis |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I114832834 |
| authorships[5].affiliations[0].raw_affiliation_string | Section of Endocrinology and Metabolism, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America |
| authorships[5].affiliations[1].raw_affiliation_string | Southeast Louisiana, VA Medical Center, New Orleans, Louisiana, United States of America |
| authorships[5].institutions[0].id | https://openalex.org/I114832834 |
| authorships[5].institutions[0].ror | https://ror.org/04vmvtb21 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I114832834 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Tulane University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Franck Mauvais-Jarvis |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Section of Endocrinology and Metabolism, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America, Southeast Louisiana, VA Medical Center, New Orleans, Louisiana, United States of America |
| authorships[6].author.id | https://openalex.org/A5043073448 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7991-0741 |
| authorships[6].author.display_name | Jean‐Pierre Riveline |
| authorships[6].countries | FR |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I1294671590, https://openalex.org/I154526488, https://openalex.org/I4210086369 |
| authorships[6].affiliations[0].raw_affiliation_string | Institut Necker Enfants Malades, Inserm U1151, CNRS UMR 8253, Immediab Laboratory, Paris, France |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I1294671590, https://openalex.org/I154526488, https://openalex.org/I204730241, https://openalex.org/I4210086369, https://openalex.org/I4210097159 |
| authorships[6].affiliations[1].raw_affiliation_string | Department of Diabetology, Endocrinology and Nutrition, Assistance Publique—Hôpitaux de Paris, Lariboisière University Hospital, Paris, France, and INSERM UMR-S1151, CNRS UMR-S8253, Immediab Lab,Institut Necker-Enfants Malades, Université Paris Cité, Paris, France |
| authorships[6].institutions[0].id | https://openalex.org/I4210097159 |
| authorships[6].institutions[0].ror | https://ror.org/00pg5jh14 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210097159 |
| authorships[6].institutions[0].country_code | FR |
| authorships[6].institutions[0].display_name | Assistance Publique – Hôpitaux de Paris |
| authorships[6].institutions[1].id | https://openalex.org/I1294671590 |
| authorships[6].institutions[1].ror | https://ror.org/02feahw73 |
| authorships[6].institutions[1].type | government |
| authorships[6].institutions[1].lineage | https://openalex.org/I1294671590 |
| authorships[6].institutions[1].country_code | FR |
| authorships[6].institutions[1].display_name | Centre National de la Recherche Scientifique |
| authorships[6].institutions[2].id | https://openalex.org/I154526488 |
| authorships[6].institutions[2].ror | https://ror.org/02vjkv261 |
| authorships[6].institutions[2].type | government |
| authorships[6].institutions[2].lineage | https://openalex.org/I154526488 |
| authorships[6].institutions[2].country_code | FR |
| authorships[6].institutions[2].display_name | Inserm |
| authorships[6].institutions[3].id | https://openalex.org/I4210086369 |
| authorships[6].institutions[3].ror | https://ror.org/000nhq538 |
| authorships[6].institutions[3].type | facility |
| authorships[6].institutions[3].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I154526488, https://openalex.org/I204730241, https://openalex.org/I4210086369, https://openalex.org/I4210096427 |
| authorships[6].institutions[3].country_code | FR |
| authorships[6].institutions[3].display_name | Institut Necker Enfants Malades |
| authorships[6].institutions[4].id | https://openalex.org/I204730241 |
| authorships[6].institutions[4].ror | https://ror.org/05f82e368 |
| authorships[6].institutions[4].type | education |
| authorships[6].institutions[4].lineage | https://openalex.org/I204730241 |
| authorships[6].institutions[4].country_code | FR |
| authorships[6].institutions[4].display_name | Université Paris Cité |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jean-Pierre Riveline |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Department of Diabetology, Endocrinology and Nutrition, Assistance Publique—Hôpitaux de Paris, Lariboisière University Hospital, Paris, France, and INSERM UMR-S1151, CNRS UMR-S8253, Immediab Lab,Institut Necker-Enfants Malades, Université Paris Cité, Paris, France, Institut Necker Enfants Malades, Inserm U1151, CNRS UMR 8253, Immediab Laboratory, Paris, France |
| authorships[7].author.id | https://openalex.org/A5056129670 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-8950-4111 |
| authorships[7].author.display_name | Vladimir Despotović |
| authorships[7].countries | LU |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210101141 |
| authorships[7].affiliations[0].raw_affiliation_string | Bioinformatics Platform, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, L-1445 Strassen, Luxembourg |
| authorships[7].institutions[0].id | https://openalex.org/I4210101141 |
| authorships[7].institutions[0].ror | https://ror.org/012m8gv78 |
| authorships[7].institutions[0].type | nonprofit |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210101141 |
| authorships[7].institutions[0].country_code | LU |
| authorships[7].institutions[0].display_name | Luxembourg Institute of Health |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Vladimir Despotovic |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Bioinformatics Platform, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, L-1445 Strassen, Luxembourg |
| authorships[8].author.id | https://openalex.org/A5064275163 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-5033-5966 |
| authorships[8].author.display_name | Guy Fagherazzi |
| authorships[8].countries | LU |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210101141 |
| authorships[8].affiliations[0].raw_affiliation_string | Deep Digital Phenotyping Research Unit. Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, L-1445 Strassen, Luxembourg |
| authorships[8].institutions[0].id | https://openalex.org/I4210101141 |
| authorships[8].institutions[0].ror | https://ror.org/012m8gv78 |
| authorships[8].institutions[0].type | nonprofit |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210101141 |
| authorships[8].institutions[0].country_code | LU |
| authorships[8].institutions[0].display_name | Luxembourg Institute of Health |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Guy Fagherazzi |
| authorships[8].is_corresponding | True |
| authorships[8].raw_affiliation_strings | Deep Digital Phenotyping Research Unit. Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, L-1445 Strassen, Luxembourg |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1371/journal.pdig.0000679 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A voice-based algorithm can predict type 2 diabetes status in USA adults: Findings from the Colive Voice study |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9926999807357788 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W3030915957, https://openalex.org/W2373132269, https://openalex.org/W3108466129, https://openalex.org/W2051966709, https://openalex.org/W2392162854, https://openalex.org/W2008911041, https://openalex.org/W2744023513, https://openalex.org/W2949466702, https://openalex.org/W2390926424, https://openalex.org/W4400418921 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1371/journal.pdig.0000679 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210221150 |
| best_oa_location.source.issn | 2767-3170 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2767-3170 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PLOS Digital Health |
| best_oa_location.source.host_organization | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_name | Public Library of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PLOS Digital Health |
| best_oa_location.landing_page_url | https://doi.org/10.1371/journal.pdig.0000679 |
| primary_location.id | doi:10.1371/journal.pdig.0000679 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210221150 |
| primary_location.source.issn | 2767-3170 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2767-3170 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PLOS Digital Health |
| primary_location.source.host_organization | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_name | Public Library of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PLOS Digital Health |
| primary_location.landing_page_url | https://doi.org/10.1371/journal.pdig.0000679 |
| publication_date | 2024-12-19 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4200026682, https://openalex.org/W4200533463, https://openalex.org/W2148613370, https://openalex.org/W4206530607, https://openalex.org/W4247910510, https://openalex.org/W2338167986, https://openalex.org/W3010499316, https://openalex.org/W2103556204, https://openalex.org/W2580889458, https://openalex.org/W2513716142, https://openalex.org/W2805251526, https://openalex.org/W2996636445, https://openalex.org/W4306901648, https://openalex.org/W3163881684, https://openalex.org/W1982676087, https://openalex.org/W2003419970, https://openalex.org/W2968350667, https://openalex.org/W4211169745, https://openalex.org/W2085662862, https://openalex.org/W4226462964, https://openalex.org/W2114242035, https://openalex.org/W2105153491, https://openalex.org/W3092195707, https://openalex.org/W4390766088, https://openalex.org/W4210806605, https://openalex.org/W2108904801, https://openalex.org/W4316511203, https://openalex.org/W2070597833, https://openalex.org/W3041345821, https://openalex.org/W1519321668, https://openalex.org/W3080413337, https://openalex.org/W2904805478, https://openalex.org/W2901624371, https://openalex.org/W3124528132, https://openalex.org/W2312474649, https://openalex.org/W2049833019, https://openalex.org/W2893507900, https://openalex.org/W4226145078, https://openalex.org/W4296069122, https://openalex.org/W4230518743, https://openalex.org/W2116695875, https://openalex.org/W2148455993, https://openalex.org/W4226551911, https://openalex.org/W2047738340, https://openalex.org/W1558232232 |
| referenced_works_count | 45 |
| abstract_inverted_index.2 | 7 |
| abstract_inverted_index.= | 126, 154, 161 |
| abstract_inverted_index.a | 23, 38, 183 |
| abstract_inverted_index.60 | 149 |
| abstract_inverted_index.US | 51 |
| abstract_inverted_index.We | 44 |
| abstract_inverted_index.an | 164 |
| abstract_inverted_index.as | 32, 97, 182 |
| abstract_inverted_index.by | 93 |
| abstract_inverted_index.in | 30, 146 |
| abstract_inverted_index.is | 200 |
| abstract_inverted_index.of | 21, 136, 140 |
| abstract_inverted_index.on | 59, 78 |
| abstract_inverted_index.or | 151 |
| abstract_inverted_index.to | 3, 26, 70, 104 |
| abstract_inverted_index.we | 66 |
| abstract_inverted_index.607 | 50 |
| abstract_inverted_index.66% | 139 |
| abstract_inverted_index.71% | 130, 135 |
| abstract_inverted_index.75% | 127 |
| abstract_inverted_index.93% | 168 |
| abstract_inverted_index.ADA | 171 |
| abstract_inverted_index.Our | 174 |
| abstract_inverted_index.T2D | 28, 72, 112, 142, 205 |
| abstract_inverted_index.The | 0, 88, 118 |
| abstract_inverted_index.and | 40, 82, 100, 102, 138, 156, 187, 207 |
| abstract_inverted_index.are | 196 |
| abstract_inverted_index.for | 12, 111, 128, 131, 191, 203 |
| abstract_inverted_index.key | 94 |
| abstract_inverted_index.the | 19, 33, 54, 85, 105, 170 |
| abstract_inverted_index.(AUC | 125, 153, 160 |
| abstract_inverted_index.74%) | 155 |
| abstract_inverted_index.Area | 83 |
| abstract_inverted_index.BMI, | 99 |
| abstract_inverted_index.T2D. | 192 |
| abstract_inverted_index.This | 16 |
| abstract_inverted_index.age, | 98 |
| abstract_inverted_index.aged | 148 |
| abstract_inverted_index.best | 89 |
| abstract_inverted_index.from | 49, 53 |
| abstract_inverted_index.good | 122 |
| abstract_inverted_index.male | 137 |
| abstract_inverted_index.more | 184, 208 |
| abstract_inverted_index.need | 2 |
| abstract_inverted_index.risk | 113, 172 |
| abstract_inverted_index.step | 35 |
| abstract_inverted_index.such | 96 |
| abstract_inverted_index.text | 47 |
| abstract_inverted_index.that | 177 |
| abstract_inverted_index.tool | 190 |
| abstract_inverted_index.type | 6 |
| abstract_inverted_index.were | 91 |
| abstract_inverted_index.with | 158, 163, 169 |
| abstract_inverted_index.(ADA) | 109 |
| abstract_inverted_index.(T2D) | 9 |
| abstract_inverted_index.75%), | 162 |
| abstract_inverted_index.Curve | 86 |
| abstract_inverted_index.Under | 84 |
| abstract_inverted_index.Using | 62 |
| abstract_inverted_index.Voice | 56 |
| abstract_inverted_index.While | 193 |
| abstract_inverted_index.above | 167 |
| abstract_inverted_index.based | 77 |
| abstract_inverted_index.calls | 11 |
| abstract_inverted_index.cases | 206 |
| abstract_inverted_index.could | 180 |
| abstract_inverted_index.first | 34 |
| abstract_inverted_index.older | 152 |
| abstract_inverted_index.score | 110 |
| abstract_inverted_index.serve | 181 |
| abstract_inverted_index.study | 17, 57 |
| abstract_inverted_index.these | 194 |
| abstract_inverted_index.using | 22, 115 |
| abstract_inverted_index.years | 150 |
| abstract_inverted_index.(AUC). | 87 |
| abstract_inverted_index.Colive | 55 |
| abstract_inverted_index.cases. | 143 |
| abstract_inverted_index.female | 141 |
| abstract_inverted_index.hybrid | 63 |
| abstract_inverted_index.males, | 129 |
| abstract_inverted_index.models | 90 |
| abstract_inverted_index.reduce | 4 |
| abstract_inverted_index.score. | 173 |
| abstract_inverted_index.status | 29 |
| abstract_inverted_index.adults, | 31 |
| abstract_inverted_index.diverse | 209 |
| abstract_inverted_index.factors | 95 |
| abstract_inverted_index.females | 147 |
| abstract_inverted_index.further | 198 |
| abstract_inverted_index.method. | 43 |
| abstract_inverted_index.needed, | 201 |
| abstract_inverted_index.overall | 165 |
| abstract_inverted_index.predict | 27, 71 |
| abstract_inverted_index.results | 195 |
| abstract_inverted_index.status, | 73 |
| abstract_inverted_index.suggest | 176 |
| abstract_inverted_index.through | 75 |
| abstract_inverted_index.towards | 36 |
| abstract_inverted_index.American | 106 |
| abstract_inverted_index.Diabetes | 107 |
| abstract_inverted_index.analyzed | 45 |
| abstract_inverted_index.capacity | 124 |
| abstract_inverted_index.compared | 103 |
| abstract_inverted_index.diabetes | 8 |
| abstract_inverted_index.findings | 175 |
| abstract_inverted_index.globally | 10 |
| abstract_inverted_index.improved | 145 |
| abstract_inverted_index.pressing | 1 |
| abstract_inverted_index.scalable | 41 |
| abstract_inverted_index.accuracy, | 79 |
| abstract_inverted_index.agreement | 166 |
| abstract_inverted_index.algorithm | 25 |
| abstract_inverted_index.analysis. | 117 |
| abstract_inverted_index.correctly | 133 |
| abstract_inverted_index.evaluated | 74 |
| abstract_inverted_index.females), | 132 |
| abstract_inverted_index.potential | 20 |
| abstract_inverted_index.screening | 14, 42, 189 |
| abstract_inverted_index.BYOL-S/CvT | 64 |
| abstract_inverted_index.algorithms | 69, 120, 179 |
| abstract_inverted_index.assessment | 114 |
| abstract_inverted_index.developing | 37 |
| abstract_inverted_index.innovative | 13 |
| abstract_inverted_index.predicting | 134 |
| abstract_inverted_index.predictive | 123 |
| abstract_inverted_index.promising, | 197 |
| abstract_inverted_index.recordings | 48 |
| abstract_inverted_index.registered | 58 |
| abstract_inverted_index.stratified | 92 |
| abstract_inverted_index.validation | 199 |
| abstract_inverted_index.Association | 108 |
| abstract_inverted_index.Performance | 144 |
| abstract_inverted_index.accessible, | 185 |
| abstract_inverted_index.approaches. | 15 |
| abstract_inverted_index.constructed | 67 |
| abstract_inverted_index.early-stage | 204 |
| abstract_inverted_index.embeddings, | 65 |
| abstract_inverted_index.individuals | 157 |
| abstract_inverted_index.noninvasive | 188 |
| abstract_inverted_index.undiagnosed | 5 |
| abstract_inverted_index.voice-based | 24, 119, 178 |
| abstract_inverted_index.Bland-Altman | 116 |
| abstract_inverted_index.demonstrated | 121 |
| abstract_inverted_index.hypertension | 159 |
| abstract_inverted_index.investigates | 18 |
| abstract_inverted_index.non-invasive | 39 |
| abstract_inverted_index.participants | 52 |
| abstract_inverted_index.particularly | 202 |
| abstract_inverted_index.populations. | 210 |
| abstract_inverted_index.sensitivity, | 81 |
| abstract_inverted_index.specificity, | 80 |
| abstract_inverted_index.hypertension, | 101 |
| abstract_inverted_index.pre-specified | 46 |
| abstract_inverted_index.(NCT04848623). | 61 |
| abstract_inverted_index.cost-effective, | 186 |
| abstract_inverted_index.gender-specific | 68 |
| abstract_inverted_index.cross-validation | 76 |
| abstract_inverted_index.ClinicalTrials.gov | 60 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5064499846, https://openalex.org/A5051767029, https://openalex.org/A5053123487, https://openalex.org/A5043073448, https://openalex.org/A5064275163, https://openalex.org/A5056129670, https://openalex.org/A5001021555, https://openalex.org/A5044547931, https://openalex.org/A5088101254 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I114832834, https://openalex.org/I1294671590, https://openalex.org/I154526488, https://openalex.org/I204730241, https://openalex.org/I4210086369, https://openalex.org/I4210097159, https://openalex.org/I4210101141 |
| citation_normalized_percentile.value | 0.92510294 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |