A Voice-Based Biomarker for Monitoring Symptom Resolution in Adults with COVID-19: Findings from the Prospective Predi-COVID Cohort Study Article Swipe
Guy Fagherazzi
,
Lu Zhang
,
Abir Elbéji
,
Eduardo Higa
,
Vladimir Despotović
,
Markus Ollert
,
Gloria Aguayo
,
Petr V. Nazarov
,
Aurélie Fischer
·
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.3949487
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.3949487
Related Topics
Concepts
Coronavirus disease 2019 (COVID-19)
2019-20 coronavirus outbreak
Prospective cohort study
Biomarker
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
Cohort
Medicine
Cohort study
Virology
Outbreak
Internal medicine
Biology
Biochemistry
Disease
Infectious disease (medical specialty)
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2139/ssrn.3949487
- https://papers.ssrn.com/sol3/Delivery.cfm?abstractid=3949487
- OA Status
- green
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3213077900
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3213077900Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2139/ssrn.3949487Digital Object Identifier
- Title
-
A Voice-Based Biomarker for Monitoring Symptom Resolution in Adults with COVID-19: Findings from the Prospective Predi-COVID Cohort StudyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Guy Fagherazzi, Lu Zhang, Abir Elbéji, Eduardo Higa, Vladimir Despotović, Markus Ollert, Gloria Aguayo, Petr V. Nazarov, Aurélie FischerList of authors in order
- Landing page
-
https://doi.org/10.2139/ssrn.3949487Publisher landing page
- PDF URL
-
https://papers.ssrn.com/sol3/Delivery.cfm?abstractid=3949487Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://papers.ssrn.com/sol3/Delivery.cfm?abstractid=3949487Direct OA link when available
- Concepts
-
Coronavirus disease 2019 (COVID-19), 2019-20 coronavirus outbreak, Prospective cohort study, Biomarker, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Cohort, Medicine, Cohort study, Virology, Outbreak, Internal medicine, Biology, Biochemistry, Disease, Infectious disease (medical specialty)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3213077900 |
|---|---|
| doi | https://doi.org/10.2139/ssrn.3949487 |
| ids.doi | https://doi.org/10.2139/ssrn.3949487 |
| ids.mag | 3213077900 |
| ids.openalex | https://openalex.org/W3213077900 |
| fwci | 0.0 |
| type | article |
| title | A Voice-Based Biomarker for Monitoring Symptom Resolution in Adults with COVID-19: Findings from the Prospective Predi-COVID Cohort Study |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11368 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9922999739646912 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2728 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Long-Term Effects of COVID-19 |
| topics[1].id | https://openalex.org/T11334 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9904999732971191 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2738 |
| topics[1].subfield.display_name | Psychiatry and Mental health |
| topics[1].display_name | Psychosomatic Disorders and Their Treatments |
| topics[2].id | https://openalex.org/T10168 |
| topics[2].field.id | https://openalex.org/fields/32 |
| topics[2].field.display_name | Psychology |
| topics[2].score | 0.9886999726295471 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3203 |
| topics[2].subfield.display_name | Clinical Psychology |
| topics[2].display_name | COVID-19 and Mental Health |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C3008058167 |
| concepts[0].level | 4 |
| concepts[0].score | 0.8479965329170227 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[0].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[1].id | https://openalex.org/C3006700255 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6089949607849121 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q81068910 |
| concepts[1].display_name | 2019-20 coronavirus outbreak |
| concepts[2].id | https://openalex.org/C188816634 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5868549346923828 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2113324 |
| concepts[2].display_name | Prospective cohort study |
| concepts[3].id | https://openalex.org/C2781197716 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5602594614028931 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q864574 |
| concepts[3].display_name | Biomarker |
| concepts[4].id | https://openalex.org/C3007834351 |
| concepts[4].level | 5 |
| concepts[4].score | 0.5601758360862732 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q82069695 |
| concepts[4].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| concepts[5].id | https://openalex.org/C72563966 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5007014274597168 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1303415 |
| concepts[5].display_name | Cohort |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.49518314003944397 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| concepts[7].id | https://openalex.org/C201903717 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45360100269317627 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1778788 |
| concepts[7].display_name | Cohort study |
| concepts[8].id | https://openalex.org/C159047783 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3095692992210388 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7215 |
| concepts[8].display_name | Virology |
| concepts[9].id | https://openalex.org/C116675565 |
| concepts[9].level | 2 |
| concepts[9].score | 0.17336979508399963 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3241045 |
| concepts[9].display_name | Outbreak |
| concepts[10].id | https://openalex.org/C126322002 |
| concepts[10].level | 1 |
| concepts[10].score | 0.17286646366119385 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[10].display_name | Internal medicine |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.12177261710166931 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C55493867 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[12].display_name | Biochemistry |
| concepts[13].id | https://openalex.org/C2779134260 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[13].display_name | Disease |
| concepts[14].id | https://openalex.org/C524204448 |
| concepts[14].level | 3 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[14].display_name | Infectious disease (medical specialty) |
| keywords[0].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[0].score | 0.8479965329170227 |
| keywords[0].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[1].id | https://openalex.org/keywords/2019-20-coronavirus-outbreak |
| keywords[1].score | 0.6089949607849121 |
| keywords[1].display_name | 2019-20 coronavirus outbreak |
| keywords[2].id | https://openalex.org/keywords/prospective-cohort-study |
| keywords[2].score | 0.5868549346923828 |
| keywords[2].display_name | Prospective cohort study |
| keywords[3].id | https://openalex.org/keywords/biomarker |
| keywords[3].score | 0.5602594614028931 |
| keywords[3].display_name | Biomarker |
| keywords[4].id | https://openalex.org/keywords/severe-acute-respiratory-syndrome-coronavirus-2 |
| keywords[4].score | 0.5601758360862732 |
| keywords[4].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| keywords[5].id | https://openalex.org/keywords/cohort |
| keywords[5].score | 0.5007014274597168 |
| keywords[5].display_name | Cohort |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.49518314003944397 |
| keywords[6].display_name | Medicine |
| keywords[7].id | https://openalex.org/keywords/cohort-study |
| keywords[7].score | 0.45360100269317627 |
| keywords[7].display_name | Cohort study |
| keywords[8].id | https://openalex.org/keywords/virology |
| keywords[8].score | 0.3095692992210388 |
| keywords[8].display_name | Virology |
| keywords[9].id | https://openalex.org/keywords/outbreak |
| keywords[9].score | 0.17336979508399963 |
| keywords[9].display_name | Outbreak |
| keywords[10].id | https://openalex.org/keywords/internal-medicine |
| keywords[10].score | 0.17286646366119385 |
| keywords[10].display_name | Internal medicine |
| keywords[11].id | https://openalex.org/keywords/biology |
| keywords[11].score | 0.12177261710166931 |
| keywords[11].display_name | Biology |
| language | en |
| locations[0].id | doi:10.2139/ssrn.3949487 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172589 |
| locations[0].source.issn | 1556-5068 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1556-5068 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SSRN Electronic Journal |
| locations[0].source.host_organization | https://openalex.org/I1318003438 |
| locations[0].source.host_organization_name | RELX Group (Netherlands) |
| locations[0].source.host_organization_lineage | https://openalex.org/I1318003438 |
| locations[0].license | |
| locations[0].pdf_url | https://papers.ssrn.com/sol3/Delivery.cfm?abstractid=3949487 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | SSRN Electronic Journal |
| locations[0].landing_page_url | https://doi.org/10.2139/ssrn.3949487 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5064275163 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5033-5966 |
| authorships[0].author.display_name | Guy Fagherazzi |
| authorships[0].countries | LU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210101141 |
| authorships[0].affiliations[0].raw_affiliation_string | Luxembourg Institute of Health (LIH) - Deep Digital Phenotyping Research Unit |
| authorships[0].institutions[0].id | https://openalex.org/I4210101141 |
| authorships[0].institutions[0].ror | https://ror.org/012m8gv78 |
| authorships[0].institutions[0].type | nonprofit |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210101141 |
| authorships[0].institutions[0].country_code | LU |
| authorships[0].institutions[0].display_name | Luxembourg Institute of Health |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Guy Fagherazzi |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Luxembourg Institute of Health (LIH) - Deep Digital Phenotyping Research Unit |
| authorships[1].author.id | https://openalex.org/A5100388566 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7141-6730 |
| authorships[1].author.display_name | Lu Zhang |
| authorships[1].countries | LU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210101141 |
| authorships[1].affiliations[0].raw_affiliation_string | Luxembourg Institute of Health (LIH) - Deep Digital Phenotyping Research Unit |
| authorships[1].institutions[0].id | https://openalex.org/I4210101141 |
| authorships[1].institutions[0].ror | https://ror.org/012m8gv78 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210101141 |
| authorships[1].institutions[0].country_code | LU |
| authorships[1].institutions[0].display_name | Luxembourg Institute of Health |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lu Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Luxembourg Institute of Health (LIH) - Deep Digital Phenotyping Research Unit |
| authorships[2].author.id | https://openalex.org/A5044547931 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5293-4337 |
| authorships[2].author.display_name | Abir Elbéji |
| authorships[2].countries | LU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210101141 |
| authorships[2].affiliations[0].raw_affiliation_string | Luxembourg Institute of Health (LIH) - Deep Digital Phenotyping Research Unit |
| authorships[2].institutions[0].id | https://openalex.org/I4210101141 |
| authorships[2].institutions[0].ror | https://ror.org/012m8gv78 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210101141 |
| authorships[2].institutions[0].country_code | LU |
| authorships[2].institutions[0].display_name | Luxembourg Institute of Health |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Abir Elbéji |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Luxembourg Institute of Health (LIH) - Deep Digital Phenotyping Research Unit |
| authorships[3].author.id | https://openalex.org/A5023050815 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9808-2048 |
| authorships[3].author.display_name | Eduardo Higa |
| authorships[3].countries | LU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210101141 |
| authorships[3].affiliations[0].raw_affiliation_string | Luxembourg Institute of Health (LIH) - Deep Digital Phenotyping Research Unit |
| authorships[3].institutions[0].id | https://openalex.org/I4210101141 |
| authorships[3].institutions[0].ror | https://ror.org/012m8gv78 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210101141 |
| authorships[3].institutions[0].country_code | LU |
| authorships[3].institutions[0].display_name | Luxembourg Institute of Health |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Eduardo Higa |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Luxembourg Institute of Health (LIH) - Deep Digital Phenotyping Research Unit |
| authorships[4].author.id | https://openalex.org/A5056129670 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8950-4111 |
| authorships[4].author.display_name | Vladimir Despotović |
| authorships[4].countries | LU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I186903577 |
| authorships[4].affiliations[0].raw_affiliation_string | Universite du Luxembourg - Department of Computer Science |
| authorships[4].institutions[0].id | https://openalex.org/I186903577 |
| authorships[4].institutions[0].ror | https://ror.org/036x5ad56 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I186903577 |
| authorships[4].institutions[0].country_code | LU |
| authorships[4].institutions[0].display_name | University of Luxembourg |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Vladimir Despotovic |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Universite du Luxembourg - Department of Computer Science |
| authorships[5].author.id | https://openalex.org/A5024581567 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8055-0103 |
| authorships[5].author.display_name | Markus Ollert |
| authorships[5].countries | LU |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210101141 |
| authorships[5].affiliations[0].raw_affiliation_string | Luxembourg Institute of Health (LIH) - Department of Infection and Immunity |
| authorships[5].institutions[0].id | https://openalex.org/I4210101141 |
| authorships[5].institutions[0].ror | https://ror.org/012m8gv78 |
| authorships[5].institutions[0].type | nonprofit |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210101141 |
| authorships[5].institutions[0].country_code | LU |
| authorships[5].institutions[0].display_name | Luxembourg Institute of Health |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Markus Ollert |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Luxembourg Institute of Health (LIH) - Department of Infection and Immunity |
| authorships[6].author.id | https://openalex.org/A5088101254 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5625-1664 |
| authorships[6].author.display_name | Gloria Aguayo |
| authorships[6].countries | LU |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210101141 |
| authorships[6].affiliations[0].raw_affiliation_string | Luxembourg Institute of Health (LIH) - Deep Digital Phenotyping Research Unit |
| authorships[6].institutions[0].id | https://openalex.org/I4210101141 |
| authorships[6].institutions[0].ror | https://ror.org/012m8gv78 |
| authorships[6].institutions[0].type | nonprofit |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210101141 |
| authorships[6].institutions[0].country_code | LU |
| authorships[6].institutions[0].display_name | Luxembourg Institute of Health |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Gloria A. Aguayo |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Luxembourg Institute of Health (LIH) - Deep Digital Phenotyping Research Unit |
| authorships[7].author.id | https://openalex.org/A5013957833 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-3443-0298 |
| authorships[7].author.display_name | Petr V. Nazarov |
| authorships[7].countries | LU |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210101141 |
| authorships[7].affiliations[0].raw_affiliation_string | Luxembourg Institute of Health (LIH) - Department of Cancer Research |
| authorships[7].institutions[0].id | https://openalex.org/I4210101141 |
| authorships[7].institutions[0].ror | https://ror.org/012m8gv78 |
| authorships[7].institutions[0].type | nonprofit |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210101141 |
| authorships[7].institutions[0].country_code | LU |
| authorships[7].institutions[0].display_name | Luxembourg Institute of Health |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Petr Nazarov |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Luxembourg Institute of Health (LIH) - Department of Cancer Research |
| authorships[8].author.id | https://openalex.org/A5064499846 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-2822-2874 |
| authorships[8].author.display_name | Aurélie Fischer |
| authorships[8].countries | LU |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210101141 |
| authorships[8].affiliations[0].raw_affiliation_string | Luxembourg Institute of Health (LIH) - Deep Digital Phenotyping Research Unit |
| authorships[8].institutions[0].id | https://openalex.org/I4210101141 |
| authorships[8].institutions[0].ror | https://ror.org/012m8gv78 |
| authorships[8].institutions[0].type | nonprofit |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210101141 |
| authorships[8].institutions[0].country_code | LU |
| authorships[8].institutions[0].display_name | Luxembourg Institute of Health |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Aurélie Fischer |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Luxembourg Institute of Health (LIH) - Deep Digital Phenotyping Research Unit |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://papers.ssrn.com/sol3/Delivery.cfm?abstractid=3949487 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Voice-Based Biomarker for Monitoring Symptom Resolution in Adults with COVID-19: Findings from the Prospective Predi-COVID Cohort Study |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11368 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9922999739646912 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2728 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Long-Term Effects of COVID-19 |
| related_works | https://openalex.org/W4200329650, https://openalex.org/W3127156785, https://openalex.org/W4205754011, https://openalex.org/W3009669391, https://openalex.org/W4205215807, https://openalex.org/W3005417802, https://openalex.org/W3171943759, https://openalex.org/W4226296940, https://openalex.org/W3028835529, https://openalex.org/W3036314732 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2139/ssrn.3949487 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172589 |
| best_oa_location.source.issn | 1556-5068 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1556-5068 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SSRN Electronic Journal |
| best_oa_location.source.host_organization | https://openalex.org/I1318003438 |
| best_oa_location.source.host_organization_name | RELX Group (Netherlands) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://papers.ssrn.com/sol3/Delivery.cfm?abstractid=3949487 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | SSRN Electronic Journal |
| best_oa_location.landing_page_url | https://doi.org/10.2139/ssrn.3949487 |
| primary_location.id | doi:10.2139/ssrn.3949487 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172589 |
| primary_location.source.issn | 1556-5068 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1556-5068 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SSRN Electronic Journal |
| primary_location.source.host_organization | https://openalex.org/I1318003438 |
| primary_location.source.host_organization_name | RELX Group (Netherlands) |
| primary_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| primary_location.license | |
| primary_location.pdf_url | https://papers.ssrn.com/sol3/Delivery.cfm?abstractid=3949487 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | SSRN Electronic Journal |
| primary_location.landing_page_url | https://doi.org/10.2139/ssrn.3949487 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3134841099, https://openalex.org/W3118409314, https://openalex.org/W3186314395, https://openalex.org/W3033248051, https://openalex.org/W3158996631, https://openalex.org/W3156027765, https://openalex.org/W3091468319, https://openalex.org/W3108917505, https://openalex.org/W2919271091, https://openalex.org/W4399337395, https://openalex.org/W3090795335, https://openalex.org/W3015034944, https://openalex.org/W3175127495, https://openalex.org/W3088067841, https://openalex.org/W3185939438, https://openalex.org/W2167384912, https://openalex.org/W3008028633, https://openalex.org/W3092826477, https://openalex.org/W3151334868, https://openalex.org/W3185764723, https://openalex.org/W3037417749, https://openalex.org/W3037768701, https://openalex.org/W3008295344, https://openalex.org/W3128867778, https://openalex.org/W3105837102 |
| referenced_works_count | 25 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5064275163 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I4210101141 |
| citation_normalized_percentile.value | 0.21270063 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |