A Wavelet Guided Attention Module for Skin Cancer Classification with Gradient-based Feature Fusion Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2406.15128
Skin cancer is a highly dangerous type of cancer that requires an accurate diagnosis from experienced physicians. To help physicians diagnose skin cancer more efficiently, a computer-aided diagnosis (CAD) system can be very helpful. In this paper, we propose a novel model, which uses a novel attention mechanism to pinpoint the differences in features across the spatial dimensions and symmetry of the lesion, thereby focusing on the dissimilarities of various classes based on symmetry, uniformity in texture and color, etc. Additionally, to take into account the variations in the boundaries of the lesions for different classes, we employ a gradient-based fusion of wavelet and soft attention-aided features to extract boundary information of skin lesions. We have tested our model on the multi-class and highly class-imbalanced dataset, called HAM10000, and achieved promising results, with a 91.17\% F1-score and 90.75\% accuracy. The code is made available at: https://github.com/AyushRoy2001/WAGF-Fusion.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2406.15128
- https://arxiv.org/pdf/2406.15128
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399991081
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399991081Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2406.15128Digital Object Identifier
- Title
-
A Wavelet Guided Attention Module for Skin Cancer Classification with Gradient-based Feature FusionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-21Full publication date if available
- Authors
-
Ayush Roy, Sujan Sarkar, Sohom Ghosal, Dmitrii Kaplun, Asya I. Lyanova, Ram SarkarList of authors in order
- Landing page
-
https://arxiv.org/abs/2406.15128Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2406.15128Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2406.15128Direct OA link when available
- Concepts
-
Wavelet, Artificial intelligence, Feature (linguistics), Pattern recognition (psychology), Computer science, Fusion, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399991081 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2406.15128 |
| ids.doi | https://doi.org/10.48550/arxiv.2406.15128 |
| ids.openalex | https://openalex.org/W4399991081 |
| fwci | |
| type | preprint |
| title | A Wavelet Guided Attention Module for Skin Cancer Classification with Gradient-based Feature Fusion |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10392 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9724000096321106 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2730 |
| topics[0].subfield.display_name | Oncology |
| topics[0].display_name | Cutaneous Melanoma Detection and Management |
| topics[1].id | https://openalex.org/T10862 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9427000284194946 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | AI in cancer detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C47432892 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6501217484474182 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q831390 |
| concepts[0].display_name | Wavelet |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6191677451133728 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C2776401178 |
| concepts[2].level | 2 |
| concepts[2].score | 0.618528425693512 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[2].display_name | Feature (linguistics) |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5614766478538513 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5161660313606262 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C158525013 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5126301646232605 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2593739 |
| concepts[5].display_name | Fusion |
| concepts[6].id | https://openalex.org/C41895202 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[6].display_name | Linguistics |
| concepts[7].id | https://openalex.org/C138885662 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[7].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/wavelet |
| keywords[0].score | 0.6501217484474182 |
| keywords[0].display_name | Wavelet |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6191677451133728 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/feature |
| keywords[2].score | 0.618528425693512 |
| keywords[2].display_name | Feature (linguistics) |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.5614766478538513 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5161660313606262 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/fusion |
| keywords[5].score | 0.5126301646232605 |
| keywords[5].display_name | Fusion |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2406.15128 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2406.15128 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2406.15128 |
| locations[1].id | doi:10.48550/arxiv.2406.15128 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2406.15128 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5038226969 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9330-6839 |
| authorships[0].author.display_name | Ayush Roy |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Roy, Ayush |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5025629433 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7973-3933 |
| authorships[1].author.display_name | Sujan Sarkar |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sarkar, Sujan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5113263293 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Sohom Ghosal |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ghosal, Sohom |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5054967047 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2765-4509 |
| authorships[3].author.display_name | Dmitrii Kaplun |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kaplun, Dmitrii |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5088963323 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1818-0332 |
| authorships[4].author.display_name | Asya I. Lyanova |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lyanova, Asya |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5082599641 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8813-4086 |
| authorships[5].author.display_name | Ram Sarkar |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Sarkar, Ram |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2406.15128 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-06-25T00:00:00 |
| display_name | A Wavelet Guided Attention Module for Skin Cancer Classification with Gradient-based Feature Fusion |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10392 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9724000096321106 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2730 |
| primary_topic.subfield.display_name | Oncology |
| primary_topic.display_name | Cutaneous Melanoma Detection and Management |
| related_works | https://openalex.org/W2382174632, https://openalex.org/W2129959498, https://openalex.org/W2784060934, https://openalex.org/W2902714807, https://openalex.org/W2537489131, https://openalex.org/W2394084632, https://openalex.org/W2358293514, https://openalex.org/W2033914206, https://openalex.org/W2042327336, https://openalex.org/W4386159726 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2406.15128 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2406.15128 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2406.15128 |
| primary_location.id | pmh:oai:arXiv.org:2406.15128 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2406.15128 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2406.15128 |
| publication_date | 2024-06-21 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 25, 39, 44, 98, 133 |
| abstract_inverted_index.In | 34 |
| abstract_inverted_index.To | 17 |
| abstract_inverted_index.We | 114 |
| abstract_inverted_index.an | 11 |
| abstract_inverted_index.be | 31 |
| abstract_inverted_index.in | 52, 75, 87 |
| abstract_inverted_index.is | 2, 141 |
| abstract_inverted_index.of | 7, 60, 68, 90, 101, 111 |
| abstract_inverted_index.on | 65, 72, 119 |
| abstract_inverted_index.to | 48, 81, 107 |
| abstract_inverted_index.we | 37, 96 |
| abstract_inverted_index.The | 139 |
| abstract_inverted_index.and | 58, 77, 103, 122, 128, 136 |
| abstract_inverted_index.at: | 144 |
| abstract_inverted_index.can | 30 |
| abstract_inverted_index.for | 93 |
| abstract_inverted_index.our | 117 |
| abstract_inverted_index.the | 50, 55, 61, 66, 85, 88, 91, 120 |
| abstract_inverted_index.Skin | 0 |
| abstract_inverted_index.code | 140 |
| abstract_inverted_index.etc. | 79 |
| abstract_inverted_index.from | 14 |
| abstract_inverted_index.have | 115 |
| abstract_inverted_index.help | 18 |
| abstract_inverted_index.into | 83 |
| abstract_inverted_index.made | 142 |
| abstract_inverted_index.more | 23 |
| abstract_inverted_index.skin | 21, 112 |
| abstract_inverted_index.soft | 104 |
| abstract_inverted_index.take | 82 |
| abstract_inverted_index.that | 9 |
| abstract_inverted_index.this | 35 |
| abstract_inverted_index.type | 6 |
| abstract_inverted_index.uses | 43 |
| abstract_inverted_index.very | 32 |
| abstract_inverted_index.with | 132 |
| abstract_inverted_index.(CAD) | 28 |
| abstract_inverted_index.based | 71 |
| abstract_inverted_index.model | 118 |
| abstract_inverted_index.novel | 40, 45 |
| abstract_inverted_index.which | 42 |
| abstract_inverted_index.across | 54 |
| abstract_inverted_index.called | 126 |
| abstract_inverted_index.cancer | 1, 8, 22 |
| abstract_inverted_index.color, | 78 |
| abstract_inverted_index.employ | 97 |
| abstract_inverted_index.fusion | 100 |
| abstract_inverted_index.highly | 4, 123 |
| abstract_inverted_index.model, | 41 |
| abstract_inverted_index.paper, | 36 |
| abstract_inverted_index.system | 29 |
| abstract_inverted_index.tested | 116 |
| abstract_inverted_index.90.75\% | 137 |
| abstract_inverted_index.91.17\% | 134 |
| abstract_inverted_index.account | 84 |
| abstract_inverted_index.classes | 70 |
| abstract_inverted_index.extract | 108 |
| abstract_inverted_index.lesion, | 62 |
| abstract_inverted_index.lesions | 92 |
| abstract_inverted_index.propose | 38 |
| abstract_inverted_index.spatial | 56 |
| abstract_inverted_index.texture | 76 |
| abstract_inverted_index.thereby | 63 |
| abstract_inverted_index.various | 69 |
| abstract_inverted_index.wavelet | 102 |
| abstract_inverted_index.F1-score | 135 |
| abstract_inverted_index.accurate | 12 |
| abstract_inverted_index.achieved | 129 |
| abstract_inverted_index.boundary | 109 |
| abstract_inverted_index.classes, | 95 |
| abstract_inverted_index.dataset, | 125 |
| abstract_inverted_index.diagnose | 20 |
| abstract_inverted_index.features | 53, 106 |
| abstract_inverted_index.focusing | 64 |
| abstract_inverted_index.helpful. | 33 |
| abstract_inverted_index.lesions. | 113 |
| abstract_inverted_index.pinpoint | 49 |
| abstract_inverted_index.requires | 10 |
| abstract_inverted_index.results, | 131 |
| abstract_inverted_index.symmetry | 59 |
| abstract_inverted_index.HAM10000, | 127 |
| abstract_inverted_index.accuracy. | 138 |
| abstract_inverted_index.attention | 46 |
| abstract_inverted_index.available | 143 |
| abstract_inverted_index.dangerous | 5 |
| abstract_inverted_index.diagnosis | 13, 27 |
| abstract_inverted_index.different | 94 |
| abstract_inverted_index.mechanism | 47 |
| abstract_inverted_index.promising | 130 |
| abstract_inverted_index.symmetry, | 73 |
| abstract_inverted_index.boundaries | 89 |
| abstract_inverted_index.dimensions | 57 |
| abstract_inverted_index.physicians | 19 |
| abstract_inverted_index.uniformity | 74 |
| abstract_inverted_index.variations | 86 |
| abstract_inverted_index.differences | 51 |
| abstract_inverted_index.experienced | 15 |
| abstract_inverted_index.information | 110 |
| abstract_inverted_index.multi-class | 121 |
| abstract_inverted_index.physicians. | 16 |
| abstract_inverted_index.efficiently, | 24 |
| abstract_inverted_index.Additionally, | 80 |
| abstract_inverted_index.computer-aided | 26 |
| abstract_inverted_index.gradient-based | 99 |
| abstract_inverted_index.attention-aided | 105 |
| abstract_inverted_index.dissimilarities | 67 |
| abstract_inverted_index.class-imbalanced | 124 |
| abstract_inverted_index.https://github.com/AyushRoy2001/WAGF-Fusion. | 145 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |