A wavelet packet transform-based deep feature transfer learning method for bearing fault diagnosis under different working conditions Article Swipe
Xiao Yu
,
Zhongting Liang
,
Youjie Wang
,
Hongshen Yin
,
Xiaowen Liu
,
Wanli Yu
,
Yanqiu Huang
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.measurement.2022.111597
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.measurement.2022.111597
Related Topics
Concepts
Artificial intelligence
Fault (geology)
Computer science
Feature extraction
Pattern recognition (psychology)
Transfer of learning
Residual
Noise (video)
Feature (linguistics)
Time domain
Frequency domain
Wavelet
Wavelet packet decomposition
Time–frequency analysis
Engineering
Wavelet transform
Algorithm
Computer vision
Philosophy
Image (mathematics)
Seismology
Filter (signal processing)
Geology
Linguistics
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.measurement.2022.111597
- https://www.sciencedirect.com/science/article/pii/S0263224122008090
- OA Status
- bronze
- Cited By
- 96
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4284889614
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4284889614Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.measurement.2022.111597Digital Object Identifier
- Title
-
A wavelet packet transform-based deep feature transfer learning method for bearing fault diagnosis under different working conditionsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-07-08Full publication date if available
- Authors
-
Xiao Yu, Zhongting Liang, Youjie Wang, Hongshen Yin, Xiaowen Liu, Wanli Yu, Yanqiu HuangList of authors in order
- Landing page
-
https://doi.org/10.1016/j.measurement.2022.111597Publisher landing page
- PDF URL
-
https://www.sciencedirect.com/science/article/pii/S0263224122008090Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://www.sciencedirect.com/science/article/pii/S0263224122008090Direct OA link when available
- Concepts
-
Artificial intelligence, Fault (geology), Computer science, Feature extraction, Pattern recognition (psychology), Transfer of learning, Residual, Noise (video), Feature (linguistics), Time domain, Frequency domain, Wavelet, Wavelet packet decomposition, Time–frequency analysis, Engineering, Wavelet transform, Algorithm, Computer vision, Philosophy, Image (mathematics), Seismology, Filter (signal processing), Geology, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
96Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 29, 2024: 37, 2023: 27, 2022: 3Per-year citation counts (last 5 years)
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4284889614 |
|---|---|
| doi | https://doi.org/10.1016/j.measurement.2022.111597 |
| ids.doi | https://doi.org/10.1016/j.measurement.2022.111597 |
| ids.openalex | https://openalex.org/W4284889614 |
| fwci | 14.3306739 |
| type | article |
| title | A wavelet packet transform-based deep feature transfer learning method for bearing fault diagnosis under different working conditions |
| biblio.issue | |
| biblio.volume | 201 |
| biblio.last_page | 111597 |
| biblio.first_page | 111597 |
| topics[0].id | https://openalex.org/T10220 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Machine Fault Diagnosis Techniques |
| topics[1].id | https://openalex.org/T11062 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9855999946594238 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Gear and Bearing Dynamics Analysis |
| topics[2].id | https://openalex.org/T13213 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9686999917030334 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Mechanical Failure Analysis and Simulation |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320323154 |
| funders[1].ror | https://ror.org/01xt2dr21 |
| funders[1].display_name | China University of Mining and Technology |
| funders[2].id | https://openalex.org/F4320335774 |
| funders[2].ror | |
| funders[2].display_name | Key Technologies Research and Development Program |
| is_xpac | False |
| apc_list.value | 3500 |
| apc_list.currency | USD |
| apc_list.value_usd | 3500 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.5989640951156616 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C175551986 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5861129760742188 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q47089 |
| concepts[1].display_name | Fault (geology) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5733984708786011 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C52622490 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5624776482582092 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[3].display_name | Feature extraction |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5412925481796265 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C150899416 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5265189409255981 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[5].display_name | Transfer of learning |
| concepts[6].id | https://openalex.org/C155512373 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5044299364089966 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[6].display_name | Residual |
| concepts[7].id | https://openalex.org/C99498987 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5022835731506348 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[7].display_name | Noise (video) |
| concepts[8].id | https://openalex.org/C2776401178 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4977684020996094 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[8].display_name | Feature (linguistics) |
| concepts[9].id | https://openalex.org/C103824480 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4536459147930145 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q185889 |
| concepts[9].display_name | Time domain |
| concepts[10].id | https://openalex.org/C19118579 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4367189407348633 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q786423 |
| concepts[10].display_name | Frequency domain |
| concepts[11].id | https://openalex.org/C47432892 |
| concepts[11].level | 2 |
| concepts[11].score | 0.43468087911605835 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q831390 |
| concepts[11].display_name | Wavelet |
| concepts[12].id | https://openalex.org/C155777637 |
| concepts[12].level | 4 |
| concepts[12].score | 0.42784279584884644 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2736187 |
| concepts[12].display_name | Wavelet packet decomposition |
| concepts[13].id | https://openalex.org/C142433447 |
| concepts[13].level | 3 |
| concepts[13].score | 0.4140776991844177 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7806653 |
| concepts[13].display_name | Time–frequency analysis |
| concepts[14].id | https://openalex.org/C127413603 |
| concepts[14].level | 0 |
| concepts[14].score | 0.3723413944244385 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[14].display_name | Engineering |
| concepts[15].id | https://openalex.org/C196216189 |
| concepts[15].level | 3 |
| concepts[15].score | 0.3697185516357422 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2867 |
| concepts[15].display_name | Wavelet transform |
| concepts[16].id | https://openalex.org/C11413529 |
| concepts[16].level | 1 |
| concepts[16].score | 0.2663310170173645 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[16].display_name | Algorithm |
| concepts[17].id | https://openalex.org/C31972630 |
| concepts[17].level | 1 |
| concepts[17].score | 0.1238757073879242 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[17].display_name | Computer vision |
| concepts[18].id | https://openalex.org/C138885662 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[18].display_name | Philosophy |
| concepts[19].id | https://openalex.org/C115961682 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[19].display_name | Image (mathematics) |
| concepts[20].id | https://openalex.org/C165205528 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q83371 |
| concepts[20].display_name | Seismology |
| concepts[21].id | https://openalex.org/C106131492 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[21].display_name | Filter (signal processing) |
| concepts[22].id | https://openalex.org/C127313418 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[22].display_name | Geology |
| concepts[23].id | https://openalex.org/C41895202 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[23].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.5989640951156616 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/fault |
| keywords[1].score | 0.5861129760742188 |
| keywords[1].display_name | Fault (geology) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5733984708786011 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/feature-extraction |
| keywords[3].score | 0.5624776482582092 |
| keywords[3].display_name | Feature extraction |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.5412925481796265 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[5].score | 0.5265189409255981 |
| keywords[5].display_name | Transfer of learning |
| keywords[6].id | https://openalex.org/keywords/residual |
| keywords[6].score | 0.5044299364089966 |
| keywords[6].display_name | Residual |
| keywords[7].id | https://openalex.org/keywords/noise |
| keywords[7].score | 0.5022835731506348 |
| keywords[7].display_name | Noise (video) |
| keywords[8].id | https://openalex.org/keywords/feature |
| keywords[8].score | 0.4977684020996094 |
| keywords[8].display_name | Feature (linguistics) |
| keywords[9].id | https://openalex.org/keywords/time-domain |
| keywords[9].score | 0.4536459147930145 |
| keywords[9].display_name | Time domain |
| keywords[10].id | https://openalex.org/keywords/frequency-domain |
| keywords[10].score | 0.4367189407348633 |
| keywords[10].display_name | Frequency domain |
| keywords[11].id | https://openalex.org/keywords/wavelet |
| keywords[11].score | 0.43468087911605835 |
| keywords[11].display_name | Wavelet |
| keywords[12].id | https://openalex.org/keywords/wavelet-packet-decomposition |
| keywords[12].score | 0.42784279584884644 |
| keywords[12].display_name | Wavelet packet decomposition |
| keywords[13].id | https://openalex.org/keywords/time–frequency-analysis |
| keywords[13].score | 0.4140776991844177 |
| keywords[13].display_name | Time–frequency analysis |
| keywords[14].id | https://openalex.org/keywords/engineering |
| keywords[14].score | 0.3723413944244385 |
| keywords[14].display_name | Engineering |
| keywords[15].id | https://openalex.org/keywords/wavelet-transform |
| keywords[15].score | 0.3697185516357422 |
| keywords[15].display_name | Wavelet transform |
| keywords[16].id | https://openalex.org/keywords/algorithm |
| keywords[16].score | 0.2663310170173645 |
| keywords[16].display_name | Algorithm |
| keywords[17].id | https://openalex.org/keywords/computer-vision |
| keywords[17].score | 0.1238757073879242 |
| keywords[17].display_name | Computer vision |
| language | en |
| locations[0].id | doi:10.1016/j.measurement.2022.111597 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S147767848 |
| locations[0].source.issn | 0263-2241, 1873-412X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0263-2241 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Measurement |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | https://www.sciencedirect.com/science/article/pii/S0263224122008090 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Measurement |
| locations[0].landing_page_url | https://doi.org/10.1016/j.measurement.2022.111597 |
| locations[1].id | pmh:ut:oai:ris.utwente.nl:publications/c2b7dd75-c5d5-4b3d-9e57-481a13423980 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401843 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Data Archiving and Networked Services (DANS) |
| locations[1].source.host_organization | https://openalex.org/I1322597698 |
| locations[1].source.host_organization_name | Royal Netherlands Academy of Arts and Sciences |
| locations[1].source.host_organization_lineage | https://openalex.org/I1322597698 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/article |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Measurement, 201:111597. Psychology Press |
| locations[1].landing_page_url | https://research.utwente.nl/en/publications/c2b7dd75-c5d5-4b3d-9e57-481a13423980 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5028170901 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5572-0836 |
| authorships[0].author.display_name | Xiao Yu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[0].affiliations[0].raw_affiliation_string | IOT Perception Mine Research Center, China University of Mining and Technology, Xuzhou, 221000, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I25757504 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221000, China |
| authorships[0].institutions[0].id | https://openalex.org/I25757504 |
| authorships[0].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | China University of Mining and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiao Yu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | IOT Perception Mine Research Center, China University of Mining and Technology, Xuzhou, 221000, China, School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221000, China |
| authorships[1].author.id | https://openalex.org/A5074177514 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0041-2852 |
| authorships[1].author.display_name | Zhongting Liang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221000, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I25757504 |
| authorships[1].affiliations[1].raw_affiliation_string | IOT Perception Mine Research Center, China University of Mining and Technology, Xuzhou, 221000, China |
| authorships[1].institutions[0].id | https://openalex.org/I25757504 |
| authorships[1].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | China University of Mining and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhongting Liang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | IOT Perception Mine Research Center, China University of Mining and Technology, Xuzhou, 221000, China, School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221000, China |
| authorships[2].author.id | https://openalex.org/A5082708885 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7031-2972 |
| authorships[2].author.display_name | Youjie Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[2].affiliations[0].raw_affiliation_string | IOT Perception Mine Research Center, China University of Mining and Technology, Xuzhou, 221000, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I25757504 |
| authorships[2].affiliations[1].raw_affiliation_string | School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221000, China |
| authorships[2].institutions[0].id | https://openalex.org/I25757504 |
| authorships[2].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | China University of Mining and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Youjie Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | IOT Perception Mine Research Center, China University of Mining and Technology, Xuzhou, 221000, China, School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221000, China |
| authorships[3].author.id | https://openalex.org/A5021964163 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Hongshen Yin |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221000, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I25757504 |
| authorships[3].affiliations[1].raw_affiliation_string | IOT Perception Mine Research Center, China University of Mining and Technology, Xuzhou, 221000, China |
| authorships[3].institutions[0].id | https://openalex.org/I25757504 |
| authorships[3].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | China University of Mining and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hongshen Yin |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | IOT Perception Mine Research Center, China University of Mining and Technology, Xuzhou, 221000, China, School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221000, China |
| authorships[4].author.id | https://openalex.org/A5029171785 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9016-1374 |
| authorships[4].author.display_name | Xiaowen Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, 221000, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I25757504 |
| authorships[4].affiliations[1].raw_affiliation_string | School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221000, China |
| authorships[4].institutions[0].id | https://openalex.org/I25757504 |
| authorships[4].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | China University of Mining and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xiaowen Liu |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, 221000, China, School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221000, China |
| authorships[5].author.id | https://openalex.org/A5058429956 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1299-6223 |
| authorships[5].author.display_name | Wanli Yu |
| authorships[5].countries | DE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I180437899 |
| authorships[5].affiliations[0].raw_affiliation_string | Institute of Electrodynamics and Microelectronics, University of Bremen, Bremen, 28359, Germany |
| authorships[5].institutions[0].id | https://openalex.org/I180437899 |
| authorships[5].institutions[0].ror | https://ror.org/04ers2y35 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I180437899 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | University of Bremen |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Wanli Yu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Institute of Electrodynamics and Microelectronics, University of Bremen, Bremen, 28359, Germany |
| authorships[6].author.id | https://openalex.org/A5023155191 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-0718-6322 |
| authorships[6].author.display_name | Yanqiu Huang |
| authorships[6].countries | NL |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I94624287 |
| authorships[6].affiliations[0].raw_affiliation_string | Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, 7522NH, The Netherlands |
| authorships[6].institutions[0].id | https://openalex.org/I94624287 |
| authorships[6].institutions[0].ror | https://ror.org/006hf6230 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I94624287 |
| authorships[6].institutions[0].country_code | NL |
| authorships[6].institutions[0].display_name | University of Twente |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Yanqiu Huang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, 7522NH, The Netherlands |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.sciencedirect.com/science/article/pii/S0263224122008090 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A wavelet packet transform-based deep feature transfer learning method for bearing fault diagnosis under different working conditions |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10220 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Machine Fault Diagnosis Techniques |
| related_works | https://openalex.org/W1947057263, https://openalex.org/W2782295999, https://openalex.org/W2162306796, https://openalex.org/W1970292246, https://openalex.org/W2016162169, https://openalex.org/W4247952185, https://openalex.org/W1895367623, https://openalex.org/W1642462315, https://openalex.org/W2015118744, https://openalex.org/W2355447608 |
| cited_by_count | 96 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 29 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 37 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 27 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.measurement.2022.111597 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S147767848 |
| best_oa_location.source.issn | 0263-2241, 1873-412X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0263-2241 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Measurement |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.sciencedirect.com/science/article/pii/S0263224122008090 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Measurement |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.measurement.2022.111597 |
| primary_location.id | doi:10.1016/j.measurement.2022.111597 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S147767848 |
| primary_location.source.issn | 0263-2241, 1873-412X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0263-2241 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Measurement |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | https://www.sciencedirect.com/science/article/pii/S0263224122008090 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Measurement |
| primary_location.landing_page_url | https://doi.org/10.1016/j.measurement.2022.111597 |
| publication_date | 2022-07-08 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3025888249, https://openalex.org/W3083358932, https://openalex.org/W2907541186, https://openalex.org/W2287972354, https://openalex.org/W2609688418, https://openalex.org/W3199394937, https://openalex.org/W6796018412, https://openalex.org/W3010878087, https://openalex.org/W2932115805, https://openalex.org/W2468457481, https://openalex.org/W2323403147, https://openalex.org/W1963551311, https://openalex.org/W6660340706, https://openalex.org/W3158768656, https://openalex.org/W3146740292, https://openalex.org/W3171211495, https://openalex.org/W2810292802, https://openalex.org/W2807272465, https://openalex.org/W2767234670, https://openalex.org/W2803884688, https://openalex.org/W2744790985, https://openalex.org/W2562762876, https://openalex.org/W2765284480, https://openalex.org/W2735326783, https://openalex.org/W2962769582, https://openalex.org/W6741462054, https://openalex.org/W2194775991, https://openalex.org/W3195959685, https://openalex.org/W6803313602, https://openalex.org/W2914298094, https://openalex.org/W3017630871, https://openalex.org/W2945927364, https://openalex.org/W6781554365, https://openalex.org/W6780739517, https://openalex.org/W2969372261, https://openalex.org/W2898375427, https://openalex.org/W3111360185, https://openalex.org/W3022265541, https://openalex.org/W3034110479, https://openalex.org/W2998535639, https://openalex.org/W2901639182, https://openalex.org/W3161853558, https://openalex.org/W4255444167, https://openalex.org/W3081021266, https://openalex.org/W3043790829, https://openalex.org/W3208926133, https://openalex.org/W3167619929 |
| referenced_works_count | 47 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5029171785 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I25757504 |
| citation_normalized_percentile.value | 0.99350869 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |