A web-based tool for predicting gastric ulcers in Chinese elderly adults based on machine learning algorithms and noninvasive predictors: A national cross-sectional and cohort study Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1177/20552076251336951
Background As the Chinese population continues to age, the prevalence of gastric ulcers, a common nutrition and diet-related disorder, is rising among the elderly. Gastric ulcers pose a significant public health challenge in China, yet there is limited research to predict gastric ulcers accurately. Objective Our study aims to employ machine learning algorithms to predict the occurrence of gastric ulcers and develop an online tool to assess the risk of gastric ulcers for elderly individuals, both currently and in the future, while identifying important predictors. Method We used baseline data from the Chinese Longitudinal Healthy Longevity Survey in 2011 and 2014, with a follow-up endpoint of 2018. We employed nine machine learning algorithms to construct predictive models for gastric ulcers over the next seven years (2011–2018, with 1482 samples) and the next three years (2014–2018, with 2659 samples). Additionally, we utilized cross-sectional data from 2018 (with 13,775 samples) to construct a predictive model for current gastric ulcers. Results Noninvasive predictors such as demographic, behavioral, nutritional, and physical examination factors were utilized to predict the current and future occurrence of gastric ulcers. In our study, Support Vector Machine (SVM), Random Forest (RF), and Light Gradient Boosting Machine (LGBM) achieved an accuracy of 0.97 for predicting gastric ulcers over seven years; Logistic Regression, Adaptive Boosting, SVM, RF, Gradient Boosting Machine, LGBM, and K-Nearest Neighbors reached 0.98 for three-year predictions; and SVM, Extreme Gradient Boosting, RF, and LGBM attained 0.95 for current gastric ulcer prediction. Conclusions We developed MyGutRisk, built on optimal machine learning models, relatively accurately predicts gastric ulcer risk in elderly adults using noninvasive factors like diet and lifestyle. It supports self-assessment via a public link and clinical screening in community health settings to guide preventive measures. However, as a prototype, it requires further validation to ensure accuracy and generalizability across diverse populations and real-world applications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1177/20552076251336951
- OA Status
- gold
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410547659
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410547659Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1177/20552076251336951Digital Object Identifier
- Title
-
A web-based tool for predicting gastric ulcers in Chinese elderly adults based on machine learning algorithms and noninvasive predictors: A national cross-sectional and cohort studyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-01Full publication date if available
- Authors
-
Xingjian Xiao, Xiaohan Yi, Zumin Shi, Zongyuan Ge, Hualing Song, Hailei Zhao, Tiantian Liang, Xinming Yang, Suxian Liu, Bo Sun, Xianglong XuList of authors in order
- Landing page
-
https://doi.org/10.1177/20552076251336951Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1177/20552076251336951Direct OA link when available
- Concepts
-
Support vector machine, Machine learning, Medicine, Random forest, Artificial intelligence, Logistic regression, Gradient boosting, Boosting (machine learning), Algorithm, Lasso (programming language), Internal medicine, Computer science, World Wide WebTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410547659 |
|---|---|
| doi | https://doi.org/10.1177/20552076251336951 |
| ids.doi | https://doi.org/10.1177/20552076251336951 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40416072 |
| ids.openalex | https://openalex.org/W4410547659 |
| fwci | 0.0 |
| type | article |
| title | A web-based tool for predicting gastric ulcers in Chinese elderly adults based on machine learning algorithms and noninvasive predictors: A national cross-sectional and cohort study |
| awards[0].id | https://openalex.org/G8832346305 |
| awards[0].funder_id | https://openalex.org/F4320317789 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2024QN108 |
| awards[0].funder_display_name | Shanghai Municipal Health Commission |
| awards[1].id | https://openalex.org/G1444251785 |
| awards[1].funder_id | https://openalex.org/F4320330670 |
| awards[1].display_name | |
| awards[1].funder_award_id | YC-2023-0901 |
| awards[1].funder_display_name | Shanghai Pudong New Area Health Commission |
| biblio.issue | |
| biblio.volume | 11 |
| biblio.last_page | 20552076251336951 |
| biblio.first_page | 20552076251336951 |
| topics[0].id | https://openalex.org/T10276 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9865000247955322 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2746 |
| topics[0].subfield.display_name | Surgery |
| topics[0].display_name | Helicobacter pylori-related gastroenterology studies |
| funders[0].id | https://openalex.org/F4320317789 |
| funders[0].ror | |
| funders[0].display_name | Shanghai Municipal Health Commission |
| funders[1].id | https://openalex.org/F4320330670 |
| funders[1].ror | |
| funders[1].display_name | Shanghai Pudong New Area Health Commission |
| is_xpac | False |
| apc_list.value | 1500 |
| apc_list.currency | USD |
| apc_list.value_usd | 1500 |
| apc_paid.value | 1500 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1500 |
| concepts[0].id | https://openalex.org/C12267149 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7233161330223083 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[0].display_name | Support vector machine |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7027482390403748 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C71924100 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6959516406059265 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[2].display_name | Medicine |
| concepts[3].id | https://openalex.org/C169258074 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6677299737930298 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[3].display_name | Random forest |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6528398990631104 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C151956035 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6090605854988098 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[5].display_name | Logistic regression |
| concepts[6].id | https://openalex.org/C70153297 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5938913226127625 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5591907 |
| concepts[6].display_name | Gradient boosting |
| concepts[7].id | https://openalex.org/C46686674 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5754256248474121 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[7].display_name | Boosting (machine learning) |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.5573190450668335 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C37616216 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5174642205238342 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3218363 |
| concepts[9].display_name | Lasso (programming language) |
| concepts[10].id | https://openalex.org/C126322002 |
| concepts[10].level | 1 |
| concepts[10].score | 0.28506186604499817 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[10].display_name | Internal medicine |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2600501775741577 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C136764020 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[12].display_name | World Wide Web |
| keywords[0].id | https://openalex.org/keywords/support-vector-machine |
| keywords[0].score | 0.7233161330223083 |
| keywords[0].display_name | Support vector machine |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.7027482390403748 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/medicine |
| keywords[2].score | 0.6959516406059265 |
| keywords[2].display_name | Medicine |
| keywords[3].id | https://openalex.org/keywords/random-forest |
| keywords[3].score | 0.6677299737930298 |
| keywords[3].display_name | Random forest |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6528398990631104 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/logistic-regression |
| keywords[5].score | 0.6090605854988098 |
| keywords[5].display_name | Logistic regression |
| keywords[6].id | https://openalex.org/keywords/gradient-boosting |
| keywords[6].score | 0.5938913226127625 |
| keywords[6].display_name | Gradient boosting |
| keywords[7].id | https://openalex.org/keywords/boosting |
| keywords[7].score | 0.5754256248474121 |
| keywords[7].display_name | Boosting (machine learning) |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.5573190450668335 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/lasso |
| keywords[9].score | 0.5174642205238342 |
| keywords[9].display_name | Lasso (programming language) |
| keywords[10].id | https://openalex.org/keywords/internal-medicine |
| keywords[10].score | 0.28506186604499817 |
| keywords[10].display_name | Internal medicine |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.2600501775741577 |
| keywords[11].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.1177/20552076251336951 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210188408 |
| locations[0].source.issn | 2055-2076 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2055-2076 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Digital Health |
| locations[0].source.host_organization | https://openalex.org/P4310320017 |
| locations[0].source.host_organization_name | SAGE Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320017 |
| locations[0].source.host_organization_lineage_names | SAGE Publishing |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | DIGITAL HEALTH |
| locations[0].landing_page_url | https://doi.org/10.1177/20552076251336951 |
| locations[1].id | pmid:40416072 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Digital health |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40416072 |
| locations[2].id | pmh:oai:doaj.org/article:5f2e4c6ab1bb41078a88c430b479825a |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Digital Health, Vol 11 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/5f2e4c6ab1bb41078a88c430b479825a |
| locations[3].id | pmh:oai:monash.edu:publications/84c4e2a7-3d1e-4a72-b248-f345db817f5b |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306402625 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Monash University Research Portal (Monash University) |
| locations[3].source.host_organization | https://openalex.org/I56590836 |
| locations[3].source.host_organization_name | Monash University |
| locations[3].source.host_organization_lineage | https://openalex.org/I56590836 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Xiao, X, Yi, X, Shi, Z, Ge, Z, Song, H, Zhao, H, Liang, T, Yang, X, Liu, S, Sun, B & Xu, X 2025, 'A web-based tool for predicting gastric ulcers in Chinese elderly adults based on machine learning algorithms and noninvasive predictors : A national cross-sectional and cohort study', Digital Health, vol. 11, 20552076251336951. https://doi.org/10.1177/20552076251336951 |
| locations[3].landing_page_url | https://research.monash.edu/en/publications/84c4e2a7-3d1e-4a72-b248-f345db817f5b |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5018412025 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Xingjian Xiao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210098460 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210098460 |
| authorships[0].institutions[0].ror | https://ror.org/00z27jk27 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210098460 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shanghai University of Traditional Chinese Medicine |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xingjian Xiao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China |
| authorships[1].author.id | https://openalex.org/A5110920839 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Xiaohan Yi |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210098460 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210098460 |
| authorships[1].institutions[0].ror | https://ror.org/00z27jk27 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210098460 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shanghai University of Traditional Chinese Medicine |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiaohan Yi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China |
| authorships[2].author.id | https://openalex.org/A5077549519 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3099-3299 |
| authorships[2].author.display_name | Zumin Shi |
| authorships[2].countries | QA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I60342839 |
| authorships[2].affiliations[0].raw_affiliation_string | Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar |
| authorships[2].institutions[0].id | https://openalex.org/I60342839 |
| authorships[2].institutions[0].ror | https://ror.org/00yhnba62 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I60342839 |
| authorships[2].institutions[0].country_code | QA |
| authorships[2].institutions[0].display_name | Qatar University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zumin Shi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar |
| authorships[3].author.id | https://openalex.org/A5005014252 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5880-8673 |
| authorships[3].author.display_name | Zongyuan Ge |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I56590836 |
| authorships[3].affiliations[0].raw_affiliation_string | Monash e-Research Center, Faculty of Engineering, Airdoc Research, Nvidia AI Technology Research Center, Monash University, Melbourne, Victoria, Australia |
| authorships[3].institutions[0].id | https://openalex.org/I56590836 |
| authorships[3].institutions[0].ror | https://ror.org/02bfwt286 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I56590836 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | Monash University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zongyuan Ge |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Monash e-Research Center, Faculty of Engineering, Airdoc Research, Nvidia AI Technology Research Center, Monash University, Melbourne, Victoria, Australia |
| authorships[4].author.id | https://openalex.org/A5033893468 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Hualing Song |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210098460 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210098460 |
| authorships[4].institutions[0].ror | https://ror.org/00z27jk27 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210098460 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Shanghai University of Traditional Chinese Medicine |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hualing Song |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China |
| authorships[5].author.id | https://openalex.org/A5015595067 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5564-3677 |
| authorships[5].author.display_name | Hailei Zhao |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210098460 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210098460 |
| authorships[5].institutions[0].ror | https://ror.org/00z27jk27 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210098460 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Shanghai University of Traditional Chinese Medicine |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Hailei Zhao |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China |
| authorships[6].author.id | https://openalex.org/A5043819202 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3954-0373 |
| authorships[6].author.display_name | Tiantian Liang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210098460 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210098460 |
| authorships[6].institutions[0].ror | https://ror.org/00z27jk27 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210098460 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Shanghai University of Traditional Chinese Medicine |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Tiantian Liang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China |
| authorships[7].author.id | https://openalex.org/A5038555998 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Xinming Yang |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210098460 |
| authorships[7].affiliations[0].raw_affiliation_string | School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China |
| authorships[7].institutions[0].id | https://openalex.org/I4210098460 |
| authorships[7].institutions[0].ror | https://ror.org/00z27jk27 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210098460 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Shanghai University of Traditional Chinese Medicine |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Xinming Yang |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China |
| authorships[8].author.id | https://openalex.org/A5029456052 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-0541-5267 |
| authorships[8].author.display_name | Suxian Liu |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210098460, https://openalex.org/I4210101984 |
| authorships[8].affiliations[0].raw_affiliation_string | Endoscopy Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China |
| authorships[8].institutions[0].id | https://openalex.org/I4210101984 |
| authorships[8].institutions[0].ror | https://ror.org/016yezh07 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210101984 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Longhua Hospital Shanghai University of Traditional Chinese Medicine |
| authorships[8].institutions[1].id | https://openalex.org/I4210098460 |
| authorships[8].institutions[1].ror | https://ror.org/00z27jk27 |
| authorships[8].institutions[1].type | education |
| authorships[8].institutions[1].lineage | https://openalex.org/I4210098460 |
| authorships[8].institutions[1].country_code | CN |
| authorships[8].institutions[1].display_name | Shanghai University of Traditional Chinese Medicine |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Suxian Liu |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Endoscopy Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China |
| authorships[9].author.id | https://openalex.org/A5100642907 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-3172-7811 |
| authorships[9].author.display_name | Bo Sun |
| authorships[9].countries | CN |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I4210098460, https://openalex.org/I4210101984 |
| authorships[9].affiliations[0].raw_affiliation_string | Endoscopy Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China |
| authorships[9].institutions[0].id | https://openalex.org/I4210101984 |
| authorships[9].institutions[0].ror | https://ror.org/016yezh07 |
| authorships[9].institutions[0].type | healthcare |
| authorships[9].institutions[0].lineage | https://openalex.org/I4210101984 |
| authorships[9].institutions[0].country_code | CN |
| authorships[9].institutions[0].display_name | Longhua Hospital Shanghai University of Traditional Chinese Medicine |
| authorships[9].institutions[1].id | https://openalex.org/I4210098460 |
| authorships[9].institutions[1].ror | https://ror.org/00z27jk27 |
| authorships[9].institutions[1].type | education |
| authorships[9].institutions[1].lineage | https://openalex.org/I4210098460 |
| authorships[9].institutions[1].country_code | CN |
| authorships[9].institutions[1].display_name | Shanghai University of Traditional Chinese Medicine |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Bo Sun |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Endoscopy Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China |
| authorships[10].author.id | https://openalex.org/A5049204344 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-1873-4734 |
| authorships[10].author.display_name | Xianglong Xu |
| authorships[10].countries | AU, CN |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I4210098460 |
| authorships[10].affiliations[0].raw_affiliation_string | School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China |
| authorships[10].affiliations[1].institution_ids | https://openalex.org/I56590836 |
| authorships[10].affiliations[1].raw_affiliation_string | School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia |
| authorships[10].institutions[0].id | https://openalex.org/I56590836 |
| authorships[10].institutions[0].ror | https://ror.org/02bfwt286 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I56590836 |
| authorships[10].institutions[0].country_code | AU |
| authorships[10].institutions[0].display_name | Monash University |
| authorships[10].institutions[1].id | https://openalex.org/I4210098460 |
| authorships[10].institutions[1].ror | https://ror.org/00z27jk27 |
| authorships[10].institutions[1].type | education |
| authorships[10].institutions[1].lineage | https://openalex.org/I4210098460 |
| authorships[10].institutions[1].country_code | CN |
| authorships[10].institutions[1].display_name | Shanghai University of Traditional Chinese Medicine |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Xianglong Xu |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1177/20552076251336951 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A web-based tool for predicting gastric ulcers in Chinese elderly adults based on machine learning algorithms and noninvasive predictors: A national cross-sectional and cohort study |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10276 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9865000247955322 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2746 |
| primary_topic.subfield.display_name | Surgery |
| primary_topic.display_name | Helicobacter pylori-related gastroenterology studies |
| related_works | https://openalex.org/W2967733078, https://openalex.org/W4396689146, https://openalex.org/W4200112873, https://openalex.org/W3204430031, https://openalex.org/W3137904399, https://openalex.org/W4310492845, https://openalex.org/W2955796858, https://openalex.org/W2885778889, https://openalex.org/W4310224730, https://openalex.org/W2766514146 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1177/20552076251336951 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210188408 |
| best_oa_location.source.issn | 2055-2076 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2055-2076 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Digital Health |
| best_oa_location.source.host_organization | https://openalex.org/P4310320017 |
| best_oa_location.source.host_organization_name | SAGE Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320017 |
| best_oa_location.source.host_organization_lineage_names | SAGE Publishing |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | DIGITAL HEALTH |
| best_oa_location.landing_page_url | https://doi.org/10.1177/20552076251336951 |
| primary_location.id | doi:10.1177/20552076251336951 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210188408 |
| primary_location.source.issn | 2055-2076 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2055-2076 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Digital Health |
| primary_location.source.host_organization | https://openalex.org/P4310320017 |
| primary_location.source.host_organization_name | SAGE Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320017 |
| primary_location.source.host_organization_lineage_names | SAGE Publishing |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | DIGITAL HEALTH |
| primary_location.landing_page_url | https://doi.org/10.1177/20552076251336951 |
| publication_date | 2025-04-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2009429770, https://openalex.org/W4304588816, https://openalex.org/W4400932626, https://openalex.org/W4366780660, https://openalex.org/W4282829467, https://openalex.org/W2059455934, https://openalex.org/W4200296207, https://openalex.org/W3110866835, https://openalex.org/W2898574663, https://openalex.org/W2040001777, https://openalex.org/W2255678518, https://openalex.org/W188552581, https://openalex.org/W4318919268, https://openalex.org/W4381571459, https://openalex.org/W2085043416, https://openalex.org/W6887987773, https://openalex.org/W2328176404, https://openalex.org/W1983479840, https://openalex.org/W2901980248, https://openalex.org/W3083846475, https://openalex.org/W1578189584, https://openalex.org/W4200024805, https://openalex.org/W3153557350, https://openalex.org/W4388522425, https://openalex.org/W3133577659, https://openalex.org/W2076644494 |
| referenced_works_count | 26 |
| abstract_inverted_index.a | 13, 27, 102, 150, 272, 288 |
| abstract_inverted_index.As | 1 |
| abstract_inverted_index.In | 181 |
| abstract_inverted_index.It | 268 |
| abstract_inverted_index.We | 86, 107, 243 |
| abstract_inverted_index.an | 62, 198 |
| abstract_inverted_index.as | 161, 287 |
| abstract_inverted_index.in | 32, 78, 97, 258, 278 |
| abstract_inverted_index.is | 19, 36 |
| abstract_inverted_index.it | 290 |
| abstract_inverted_index.of | 10, 57, 69, 105, 178, 200 |
| abstract_inverted_index.on | 247 |
| abstract_inverted_index.to | 6, 39, 48, 53, 65, 113, 148, 171, 282, 294 |
| abstract_inverted_index.we | 139 |
| abstract_inverted_index.Our | 45 |
| abstract_inverted_index.RF, | 214, 232 |
| abstract_inverted_index.and | 16, 60, 77, 99, 129, 165, 175, 191, 219, 227, 233, 266, 275, 297, 302 |
| abstract_inverted_index.for | 72, 117, 153, 202, 224, 237 |
| abstract_inverted_index.our | 182 |
| abstract_inverted_index.the | 2, 8, 22, 55, 67, 79, 91, 121, 130, 173 |
| abstract_inverted_index.via | 271 |
| abstract_inverted_index.yet | 34 |
| abstract_inverted_index.0.95 | 236 |
| abstract_inverted_index.0.97 | 201 |
| abstract_inverted_index.0.98 | 223 |
| abstract_inverted_index.1482 | 127 |
| abstract_inverted_index.2011 | 98 |
| abstract_inverted_index.2018 | 144 |
| abstract_inverted_index.2659 | 136 |
| abstract_inverted_index.LGBM | 234 |
| abstract_inverted_index.SVM, | 213, 228 |
| abstract_inverted_index.age, | 7 |
| abstract_inverted_index.aims | 47 |
| abstract_inverted_index.both | 75 |
| abstract_inverted_index.data | 89, 142 |
| abstract_inverted_index.diet | 265 |
| abstract_inverted_index.from | 90, 143 |
| abstract_inverted_index.like | 264 |
| abstract_inverted_index.link | 274 |
| abstract_inverted_index.next | 122, 131 |
| abstract_inverted_index.nine | 109 |
| abstract_inverted_index.over | 120, 206 |
| abstract_inverted_index.pose | 26 |
| abstract_inverted_index.risk | 68, 257 |
| abstract_inverted_index.such | 160 |
| abstract_inverted_index.tool | 64 |
| abstract_inverted_index.used | 87 |
| abstract_inverted_index.were | 169 |
| abstract_inverted_index.with | 101, 126, 135 |
| abstract_inverted_index.(RF), | 190 |
| abstract_inverted_index.(with | 145 |
| abstract_inverted_index.2014, | 100 |
| abstract_inverted_index.2018. | 106 |
| abstract_inverted_index.LGBM, | 218 |
| abstract_inverted_index.Light | 192 |
| abstract_inverted_index.among | 21 |
| abstract_inverted_index.built | 246 |
| abstract_inverted_index.guide | 283 |
| abstract_inverted_index.model | 152 |
| abstract_inverted_index.seven | 123, 207 |
| abstract_inverted_index.study | 46 |
| abstract_inverted_index.there | 35 |
| abstract_inverted_index.three | 132 |
| abstract_inverted_index.ulcer | 240, 256 |
| abstract_inverted_index.using | 261 |
| abstract_inverted_index.while | 81 |
| abstract_inverted_index.years | 124, 133 |
| abstract_inverted_index.(LGBM) | 196 |
| abstract_inverted_index.(SVM), | 187 |
| abstract_inverted_index.13,775 | 146 |
| abstract_inverted_index.China, | 33 |
| abstract_inverted_index.Forest | 189 |
| abstract_inverted_index.Method | 85 |
| abstract_inverted_index.Random | 188 |
| abstract_inverted_index.Survey | 96 |
| abstract_inverted_index.Vector | 185 |
| abstract_inverted_index.across | 299 |
| abstract_inverted_index.adults | 260 |
| abstract_inverted_index.assess | 66 |
| abstract_inverted_index.common | 14 |
| abstract_inverted_index.employ | 49 |
| abstract_inverted_index.ensure | 295 |
| abstract_inverted_index.future | 176 |
| abstract_inverted_index.health | 30, 280 |
| abstract_inverted_index.models | 116 |
| abstract_inverted_index.online | 63 |
| abstract_inverted_index.public | 29, 273 |
| abstract_inverted_index.rising | 20 |
| abstract_inverted_index.study, | 183 |
| abstract_inverted_index.ulcers | 25, 42, 59, 71, 119, 205 |
| abstract_inverted_index.years; | 208 |
| abstract_inverted_index.Chinese | 3, 92 |
| abstract_inverted_index.Extreme | 229 |
| abstract_inverted_index.Gastric | 24 |
| abstract_inverted_index.Healthy | 94 |
| abstract_inverted_index.Machine | 186, 195 |
| abstract_inverted_index.Results | 157 |
| abstract_inverted_index.Support | 184 |
| abstract_inverted_index.current | 154, 174, 238 |
| abstract_inverted_index.develop | 61 |
| abstract_inverted_index.diverse | 300 |
| abstract_inverted_index.elderly | 73, 259 |
| abstract_inverted_index.factors | 168, 263 |
| abstract_inverted_index.further | 292 |
| abstract_inverted_index.future, | 80 |
| abstract_inverted_index.gastric | 11, 41, 58, 70, 118, 155, 179, 204, 239, 255 |
| abstract_inverted_index.limited | 37 |
| abstract_inverted_index.machine | 50, 110, 249 |
| abstract_inverted_index.models, | 251 |
| abstract_inverted_index.optimal | 248 |
| abstract_inverted_index.predict | 40, 54, 172 |
| abstract_inverted_index.reached | 222 |
| abstract_inverted_index.ulcers, | 12 |
| abstract_inverted_index.ulcers. | 156, 180 |
| abstract_inverted_index.Adaptive | 211 |
| abstract_inverted_index.Boosting | 194, 216 |
| abstract_inverted_index.Gradient | 193, 215, 230 |
| abstract_inverted_index.However, | 286 |
| abstract_inverted_index.Logistic | 209 |
| abstract_inverted_index.Machine, | 217 |
| abstract_inverted_index.accuracy | 199, 296 |
| abstract_inverted_index.achieved | 197 |
| abstract_inverted_index.attained | 235 |
| abstract_inverted_index.baseline | 88 |
| abstract_inverted_index.clinical | 276 |
| abstract_inverted_index.elderly. | 23 |
| abstract_inverted_index.employed | 108 |
| abstract_inverted_index.endpoint | 104 |
| abstract_inverted_index.learning | 51, 111, 250 |
| abstract_inverted_index.physical | 166 |
| abstract_inverted_index.predicts | 254 |
| abstract_inverted_index.requires | 291 |
| abstract_inverted_index.research | 38 |
| abstract_inverted_index.samples) | 128, 147 |
| abstract_inverted_index.settings | 281 |
| abstract_inverted_index.supports | 269 |
| abstract_inverted_index.utilized | 140, 170 |
| abstract_inverted_index.Boosting, | 212, 231 |
| abstract_inverted_index.K-Nearest | 220 |
| abstract_inverted_index.Longevity | 95 |
| abstract_inverted_index.Neighbors | 221 |
| abstract_inverted_index.Objective | 44 |
| abstract_inverted_index.challenge | 31 |
| abstract_inverted_index.community | 279 |
| abstract_inverted_index.construct | 114, 149 |
| abstract_inverted_index.continues | 5 |
| abstract_inverted_index.currently | 76 |
| abstract_inverted_index.developed | 244 |
| abstract_inverted_index.disorder, | 18 |
| abstract_inverted_index.follow-up | 103 |
| abstract_inverted_index.important | 83 |
| abstract_inverted_index.measures. | 285 |
| abstract_inverted_index.nutrition | 15 |
| abstract_inverted_index.samples). | 137 |
| abstract_inverted_index.screening | 277 |
| abstract_inverted_index.Background | 0 |
| abstract_inverted_index.MyGutRisk, | 245 |
| abstract_inverted_index.accurately | 253 |
| abstract_inverted_index.algorithms | 52, 112 |
| abstract_inverted_index.lifestyle. | 267 |
| abstract_inverted_index.occurrence | 56, 177 |
| abstract_inverted_index.population | 4 |
| abstract_inverted_index.predicting | 203 |
| abstract_inverted_index.predictive | 115, 151 |
| abstract_inverted_index.predictors | 159 |
| abstract_inverted_index.prevalence | 9 |
| abstract_inverted_index.preventive | 284 |
| abstract_inverted_index.prototype, | 289 |
| abstract_inverted_index.real-world | 303 |
| abstract_inverted_index.relatively | 252 |
| abstract_inverted_index.three-year | 225 |
| abstract_inverted_index.validation | 293 |
| abstract_inverted_index.Conclusions | 242 |
| abstract_inverted_index.Noninvasive | 158 |
| abstract_inverted_index.Regression, | 210 |
| abstract_inverted_index.accurately. | 43 |
| abstract_inverted_index.behavioral, | 163 |
| abstract_inverted_index.examination | 167 |
| abstract_inverted_index.identifying | 82 |
| abstract_inverted_index.noninvasive | 262 |
| abstract_inverted_index.populations | 301 |
| abstract_inverted_index.prediction. | 241 |
| abstract_inverted_index.predictors. | 84 |
| abstract_inverted_index.significant | 28 |
| abstract_inverted_index.Longitudinal | 93 |
| abstract_inverted_index.demographic, | 162 |
| abstract_inverted_index.diet-related | 17 |
| abstract_inverted_index.individuals, | 74 |
| abstract_inverted_index.nutritional, | 164 |
| abstract_inverted_index.predictions; | 226 |
| abstract_inverted_index.(2011–2018, | 125 |
| abstract_inverted_index.(2014–2018, | 134 |
| abstract_inverted_index.Additionally, | 138 |
| abstract_inverted_index.applications. | 304 |
| abstract_inverted_index.cross-sectional | 141 |
| abstract_inverted_index.self-assessment | 270 |
| abstract_inverted_index.generalizability | 298 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 11 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.6700000166893005 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.28898725 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |