A Wide Scale Classification of Class Imbalance Problem and its Solutions: A Systematic Literature Review Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.3844/jcssp.2019.886.929
In today’s world, most of the data (real world) is present in imbalanced form by nature. This is because of not having efficient algorithms to put this data (i.e., generated data by billion of internet- connected devices (IoTs)) in respective format. Imbalanced data poses a great challenge to (both) data mining and machine learning algorithms. The imbalanced dataset consists of a majority class and a minority class, where the majority class takes the lead over the minority class. Generally, several standard learning algorithms assume the balanced class distribution or equal misclassification costs. If prediction is performed by these learning algorithms on imbalanced data, the accuracy will be high for majority classes, i.e., resulting in poor performance. To overcome this problem (or improving accuracy of deision/prediction-making process), data mining and machine learning researchers have addressed the problem of imbalanced data using data-level, algorithmic level and ensemble or hybrid methods. This article presents a systematic literature review and analyze the results of more than 400 research papers published between 2002-2017 (till June 2017), resulting in a broader and elaborate investigation of the literature in this area of research. Note that extension of this article/work will contain till December 2018 research articles, which will be published in June 2019 (now these more papers/articles did not include due to no. of pages/space issues). The systematic analysis of the research literature has focus on the key role of Data Intrinsic Problems in classification, handling the imbalanced data and the techniques used to overcome the skewed distribution. Furthermore, this article reveals patterns, trends and gaps in the existing literature and discusses briefly the next generation research directions in this area.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3844/jcssp.2019.886.929
- https://thescipub.com/pdf/jcssp.2019.886.929.pdf
- OA Status
- hybrid
- Cited By
- 31
- References
- 284
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2955176339
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2955176339Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3844/jcssp.2019.886.929Digital Object Identifier
- Title
-
A Wide Scale Classification of Class Imbalance Problem and its Solutions: A Systematic Literature ReviewWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-07-01Full publication date if available
- Authors
-
Gillala Rekha, Amit Kumar Tyagi, V. Krishna ReddyList of authors in order
- Landing page
-
https://doi.org/10.3844/jcssp.2019.886.929Publisher landing page
- PDF URL
-
https://thescipub.com/pdf/jcssp.2019.886.929.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://thescipub.com/pdf/jcssp.2019.886.929.pdfDirect OA link when available
- Concepts
-
Computer science, Machine learning, Class (philosophy), Artificial intelligence, Data science, Data mining, Scale (ratio), Process (computing), Focus (optics), The Internet, World Wide Web, Operating system, Physics, Quantum mechanics, OpticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
31Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 7, 2023: 6, 2022: 5, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
284Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2955176339 |
|---|---|
| doi | https://doi.org/10.3844/jcssp.2019.886.929 |
| ids.doi | https://doi.org/10.3844/jcssp.2019.886.929 |
| ids.mag | 2955176339 |
| ids.openalex | https://openalex.org/W2955176339 |
| fwci | 1.99703069 |
| type | article |
| title | A Wide Scale Classification of Class Imbalance Problem and its Solutions: A Systematic Literature Review |
| biblio.issue | 7 |
| biblio.volume | 15 |
| biblio.last_page | 929 |
| biblio.first_page | 886 |
| topics[0].id | https://openalex.org/T11652 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9986000061035156 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Imbalanced Data Classification Techniques |
| topics[1].id | https://openalex.org/T13429 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9936000108718872 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Electricity Theft Detection Techniques |
| topics[2].id | https://openalex.org/T14319 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9587000012397766 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Currency Recognition and Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8359782695770264 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6915386319160461 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C2777212361 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6281294226646423 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[2].display_name | Class (philosophy) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5642229914665222 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2522767166 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5108682513237 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[4].display_name | Data science |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.44417813420295715 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C2778755073 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4399275779724121 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[6].display_name | Scale (ratio) |
| concepts[7].id | https://openalex.org/C98045186 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43714267015457153 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[7].display_name | Process (computing) |
| concepts[8].id | https://openalex.org/C192209626 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42456039786338806 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[8].display_name | Focus (optics) |
| concepts[9].id | https://openalex.org/C110875604 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41593432426452637 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q75 |
| concepts[9].display_name | The Internet |
| concepts[10].id | https://openalex.org/C136764020 |
| concepts[10].level | 1 |
| concepts[10].score | 0.13891634345054626 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[10].display_name | World Wide Web |
| concepts[11].id | https://openalex.org/C111919701 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[11].display_name | Operating system |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C62520636 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[13].display_name | Quantum mechanics |
| concepts[14].id | https://openalex.org/C120665830 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[14].display_name | Optics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8359782695770264 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.6915386319160461 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/class |
| keywords[2].score | 0.6281294226646423 |
| keywords[2].display_name | Class (philosophy) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5642229914665222 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/data-science |
| keywords[4].score | 0.5108682513237 |
| keywords[4].display_name | Data science |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.44417813420295715 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/scale |
| keywords[6].score | 0.4399275779724121 |
| keywords[6].display_name | Scale (ratio) |
| keywords[7].id | https://openalex.org/keywords/process |
| keywords[7].score | 0.43714267015457153 |
| keywords[7].display_name | Process (computing) |
| keywords[8].id | https://openalex.org/keywords/focus |
| keywords[8].score | 0.42456039786338806 |
| keywords[8].display_name | Focus (optics) |
| keywords[9].id | https://openalex.org/keywords/the-internet |
| keywords[9].score | 0.41593432426452637 |
| keywords[9].display_name | The Internet |
| keywords[10].id | https://openalex.org/keywords/world-wide-web |
| keywords[10].score | 0.13891634345054626 |
| keywords[10].display_name | World Wide Web |
| language | en |
| locations[0].id | doi:10.3844/jcssp.2019.886.929 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S50245893 |
| locations[0].source.issn | 1549-3636, 1552-6607 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1549-3636 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Computer Science |
| locations[0].source.host_organization | https://openalex.org/P4322697006 |
| locations[0].source.host_organization_name | Science Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4322697006 |
| locations[0].source.host_organization_lineage_names | Science Publications |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://thescipub.com/pdf/jcssp.2019.886.929.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Computer Science |
| locations[0].landing_page_url | https://doi.org/10.3844/jcssp.2019.886.929 |
| locations[1].id | pmh:oai:thescipub.com:jcssp.2019.886.929 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400310 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | American Journal of Applied Sciences (Multimedia University) |
| locations[1].source.host_organization | https://openalex.org/I173029219 |
| locations[1].source.host_organization_name | Multimedia University |
| locations[1].source.host_organization_lineage | https://openalex.org/I173029219 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Review Article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://dx.doi.org/10.3844/jcssp.2019.886.929 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101890441 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-4933-4255 |
| authorships[0].author.display_name | Gillala Rekha |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I875944469 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522502, Andhra Pradesh, India |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I876193797 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Computing Science and Engineering, Vellore Institute of Technology, Chennai Campus, Chennai, 600127, Tamilnadu, India |
| authorships[0].institutions[0].id | https://openalex.org/I875944469 |
| authorships[0].institutions[0].ror | https://ror.org/02k949197 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I875944469 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Koneru Lakshmaiah Education Foundation |
| authorships[0].institutions[1].id | https://openalex.org/I876193797 |
| authorships[0].institutions[1].ror | https://ror.org/00qzypv28 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I876193797 |
| authorships[0].institutions[1].country_code | IN |
| authorships[0].institutions[1].display_name | Vellore Institute of Technology University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gillala Rekha |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522502, Andhra Pradesh, India, School of Computing Science and Engineering, Vellore Institute of Technology, Chennai Campus, Chennai, 600127, Tamilnadu, India |
| authorships[1].author.id | https://openalex.org/A5039774878 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2657-8700 |
| authorships[1].author.display_name | Amit Kumar Tyagi |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I875944469 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522502, Andhra Pradesh, India |
| authorships[1].institutions[0].id | https://openalex.org/I875944469 |
| authorships[1].institutions[0].ror | https://ror.org/02k949197 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I875944469 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Koneru Lakshmaiah Education Foundation |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Amit Kumar Tyagi |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522502, Andhra Pradesh, India |
| authorships[2].author.id | https://openalex.org/A5011563218 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | V. Krishna Reddy |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computing Science and Engineering, Vellore Institute of Technology, Chennai Campus, Chennai, 600127, Tamilnadu, India |
| authorships[2].institutions[0].id | https://openalex.org/I876193797 |
| authorships[2].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | V. Krishna Reddy |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computing Science and Engineering, Vellore Institute of Technology, Chennai Campus, Chennai, 600127, Tamilnadu, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://thescipub.com/pdf/jcssp.2019.886.929.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Wide Scale Classification of Class Imbalance Problem and its Solutions: A Systematic Literature Review |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11652 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9986000061035156 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Imbalanced Data Classification Techniques |
| related_works | https://openalex.org/W2012531322, https://openalex.org/W2065457896, https://openalex.org/W3173234801, https://openalex.org/W2785900585, https://openalex.org/W2353730437, https://openalex.org/W2490303674, https://openalex.org/W2167984027, https://openalex.org/W2609066826, https://openalex.org/W3021302227, https://openalex.org/W2810752900 |
| cited_by_count | 31 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 6 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3844/jcssp.2019.886.929 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S50245893 |
| best_oa_location.source.issn | 1549-3636, 1552-6607 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1549-3636 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Computer Science |
| best_oa_location.source.host_organization | https://openalex.org/P4322697006 |
| best_oa_location.source.host_organization_name | Science Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4322697006 |
| best_oa_location.source.host_organization_lineage_names | Science Publications |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://thescipub.com/pdf/jcssp.2019.886.929.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Computer Science |
| best_oa_location.landing_page_url | https://doi.org/10.3844/jcssp.2019.886.929 |
| primary_location.id | doi:10.3844/jcssp.2019.886.929 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S50245893 |
| primary_location.source.issn | 1549-3636, 1552-6607 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1549-3636 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Computer Science |
| primary_location.source.host_organization | https://openalex.org/P4322697006 |
| primary_location.source.host_organization_name | Science Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4322697006 |
| primary_location.source.host_organization_lineage_names | Science Publications |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://thescipub.com/pdf/jcssp.2019.886.929.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Computer Science |
| primary_location.landing_page_url | https://doi.org/10.3844/jcssp.2019.886.929 |
| publication_date | 2019-07-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2307954101, https://openalex.org/W2027347092, https://openalex.org/W2320349359, https://openalex.org/W2576173261, https://openalex.org/W1551909886, https://openalex.org/W2590780569, https://openalex.org/W2082344779, https://openalex.org/W1968985250, https://openalex.org/W2346747597, https://openalex.org/W2029113598, https://openalex.org/W2540642777, https://openalex.org/W2142402086, https://openalex.org/W2013238257, https://openalex.org/W1977153248, https://openalex.org/W2050156339, https://openalex.org/W2601791361, https://openalex.org/W2551217426, https://openalex.org/W2140187489, https://openalex.org/W2100208452, https://openalex.org/W1993220166, https://openalex.org/W2141340736, https://openalex.org/W2510312579, https://openalex.org/W2015776218, https://openalex.org/W1568060748, https://openalex.org/W2083572170, https://openalex.org/W2006488700, https://openalex.org/W2071072418, https://openalex.org/W2166677174, https://openalex.org/W2294459794, https://openalex.org/W4212883601, https://openalex.org/W2118328848, https://openalex.org/W2404441930, https://openalex.org/W1970665788, https://openalex.org/W2053141315, https://openalex.org/W728297, https://openalex.org/W1958433089, https://openalex.org/W1969776092, https://openalex.org/W2624430499, https://openalex.org/W1970337045, https://openalex.org/W2083841938, https://openalex.org/W2095511913, https://openalex.org/W1992779513, https://openalex.org/W1977075534, https://openalex.org/W1584252140, https://openalex.org/W1563938718, https://openalex.org/W2148143831, https://openalex.org/W2053724458, https://openalex.org/W2523268328, https://openalex.org/W2010488818, https://openalex.org/W2105531169, https://openalex.org/W2609225916, https://openalex.org/W2155555718, https://openalex.org/W1955113042, https://openalex.org/W2129533023, https://openalex.org/W1670263352, https://openalex.org/W2138283690, https://openalex.org/W1867431247, https://openalex.org/W2322270447, https://openalex.org/W2109455082, https://openalex.org/W2337268483, https://openalex.org/W2507735741, https://openalex.org/W2001536048, https://openalex.org/W2171647935, https://openalex.org/W2735186907, https://openalex.org/W906603025, https://openalex.org/W769353746, https://openalex.org/W1975742283, https://openalex.org/W2569424518, https://openalex.org/W2041151138, https://openalex.org/W2577222694, https://openalex.org/W6606837198, https://openalex.org/W2023639956, https://openalex.org/W1696243063, https://openalex.org/W2336068717, https://openalex.org/W2012150114, https://openalex.org/W1989677867, https://openalex.org/W2587887613, https://openalex.org/W2146935111, https://openalex.org/W2090705424, https://openalex.org/W2105340608, https://openalex.org/W1976186848, https://openalex.org/W2593875029, https://openalex.org/W2164341120, https://openalex.org/W2521888291, https://openalex.org/W2119498311, https://openalex.org/W2099454382, https://openalex.org/W2124780997, https://openalex.org/W2119051895, https://openalex.org/W1535772863, https://openalex.org/W2090135786, https://openalex.org/W2188850503, https://openalex.org/W1981856929, https://openalex.org/W2012117566, https://openalex.org/W2040010062, https://openalex.org/W2327900220, https://openalex.org/W2623202357, https://openalex.org/W2131348354, https://openalex.org/W1994410331, https://openalex.org/W1563554545, https://openalex.org/W2616891418, https://openalex.org/W2538083562, https://openalex.org/W1888796568, https://openalex.org/W2335460219, https://openalex.org/W2260093441, https://openalex.org/W2415216399, https://openalex.org/W2044563944, https://openalex.org/W2139986471, https://openalex.org/W2097637261, https://openalex.org/W2071338184, https://openalex.org/W2577769348, https://openalex.org/W2151966571, https://openalex.org/W105055583, https://openalex.org/W1548505798, https://openalex.org/W1941659294, https://openalex.org/W2522691827, https://openalex.org/W2354826874, https://openalex.org/W2003089833, https://openalex.org/W2119157339, https://openalex.org/W2123193743, https://openalex.org/W2547211210, https://openalex.org/W2342408839, https://openalex.org/W1983940992, https://openalex.org/W2046989940, https://openalex.org/W2009414485, https://openalex.org/W2085661130, https://openalex.org/W85350352, https://openalex.org/W1588282782, https://openalex.org/W2137029138, https://openalex.org/W2009754619, https://openalex.org/W146202706, https://openalex.org/W1513874326, https://openalex.org/W2137513322, https://openalex.org/W2313763768, https://openalex.org/W2100894633, https://openalex.org/W2032308366, https://openalex.org/W2514120575, https://openalex.org/W1968710286, https://openalex.org/W2462401346, https://openalex.org/W2013313366, https://openalex.org/W2071735801, https://openalex.org/W2559373576, https://openalex.org/W2526999651, https://openalex.org/W2104167780, https://openalex.org/W2054852508, https://openalex.org/W1970945672, https://openalex.org/W2146619110, https://openalex.org/W2587430573, https://openalex.org/W2527360378, https://openalex.org/W1488843503, https://openalex.org/W2024941537, https://openalex.org/W2323628915, https://openalex.org/W2588644130, https://openalex.org/W1556906818, https://openalex.org/W2533924129, https://openalex.org/W2273614765, https://openalex.org/W2560982200, https://openalex.org/W2024305570, https://openalex.org/W2102553163, https://openalex.org/W2471991522, https://openalex.org/W1990439076, https://openalex.org/W2136994295, https://openalex.org/W2641663594, https://openalex.org/W2069309752, https://openalex.org/W1103060529, https://openalex.org/W2137822999, https://openalex.org/W2624600450, https://openalex.org/W2546459173, https://openalex.org/W1614346187, https://openalex.org/W2040107807, https://openalex.org/W2610549282, https://openalex.org/W2080997794, https://openalex.org/W2069904247, https://openalex.org/W2103715428, https://openalex.org/W2539199062, https://openalex.org/W2503353060, https://openalex.org/W2023240376, https://openalex.org/W1987860477, https://openalex.org/W123534245, https://openalex.org/W2040661907, https://openalex.org/W2025675860, https://openalex.org/W2613024511, https://openalex.org/W2151415462, https://openalex.org/W2626779422, https://openalex.org/W2136140045, https://openalex.org/W2033110225, https://openalex.org/W2289505187, https://openalex.org/W1675603313, https://openalex.org/W2108197782, https://openalex.org/W2272530424, https://openalex.org/W2049280902, https://openalex.org/W2040181375, https://openalex.org/W2017067109, https://openalex.org/W2007735173, https://openalex.org/W2023299139, https://openalex.org/W2168008172, https://openalex.org/W2155806188, https://openalex.org/W2073313621, https://openalex.org/W1528743689, https://openalex.org/W2307999539, https://openalex.org/W1994719586, https://openalex.org/W2107138773, https://openalex.org/W2216680210, https://openalex.org/W2151356078, https://openalex.org/W2590606163, https://openalex.org/W2554501045, https://openalex.org/W2096479318, https://openalex.org/W1665539047, https://openalex.org/W2512345558, https://openalex.org/W219814316, https://openalex.org/W2076058767, https://openalex.org/W2558014242, https://openalex.org/W2171141701, https://openalex.org/W2613122265, https://openalex.org/W2056601071, https://openalex.org/W2305365322, https://openalex.org/W2048050706, https://openalex.org/W2042746038, https://openalex.org/W2098311682, https://openalex.org/W2138516811, https://openalex.org/W2147876569, https://openalex.org/W2143645483, https://openalex.org/W2165837041, https://openalex.org/W6635474240, https://openalex.org/W2189918755, https://openalex.org/W2730240860, https://openalex.org/W2119168155, https://openalex.org/W2088183067, https://openalex.org/W2515197428, https://openalex.org/W2545613818, https://openalex.org/W1964675540, https://openalex.org/W2155851694, https://openalex.org/W2323332016, https://openalex.org/W1971361999, https://openalex.org/W2598853550, https://openalex.org/W2136256517, https://openalex.org/W2024223694, https://openalex.org/W2158896888, https://openalex.org/W2107327607, https://openalex.org/W1965365402, https://openalex.org/W1964250430, https://openalex.org/W3098311904, https://openalex.org/W2003638356, https://openalex.org/W1969772639, https://openalex.org/W1537555431, https://openalex.org/W2132014983, https://openalex.org/W2508098092, https://openalex.org/W1973476192, https://openalex.org/W2093690579, https://openalex.org/W2157268504, https://openalex.org/W2551447345, https://openalex.org/W2215475184, https://openalex.org/W1967885460, https://openalex.org/W1994084749, https://openalex.org/W2036187215, https://openalex.org/W2128965734, https://openalex.org/W2058165281, https://openalex.org/W2533270266, https://openalex.org/W2078517703, https://openalex.org/W2168453597, https://openalex.org/W2161736907, https://openalex.org/W2099838107, https://openalex.org/W1976790167, https://openalex.org/W2588947884, https://openalex.org/W2249025844, https://openalex.org/W1967127231, https://openalex.org/W2610530220, https://openalex.org/W2065806863, https://openalex.org/W2008864672, https://openalex.org/W1975412991, https://openalex.org/W2007912457, https://openalex.org/W2061090972, https://openalex.org/W2000537656, https://openalex.org/W2116179876, https://openalex.org/W2561534981, https://openalex.org/W2581016781, https://openalex.org/W2560762802, https://openalex.org/W2180811948, https://openalex.org/W2610381844, https://openalex.org/W2611859280, https://openalex.org/W2136903812, https://openalex.org/W2504894553, https://openalex.org/W167016754, https://openalex.org/W49700977, https://openalex.org/W2982046207 |
| referenced_works_count | 284 |
| abstract_inverted_index.a | 44, 60, 64, 151, 173 |
| abstract_inverted_index.If | 92 |
| abstract_inverted_index.To | 116 |
| abstract_inverted_index.be | 106, 201 |
| abstract_inverted_index.by | 14, 31, 96 |
| abstract_inverted_index.in | 11, 38, 113, 172, 181, 203, 236, 259, 271 |
| abstract_inverted_index.is | 9, 17, 94 |
| abstract_inverted_index.of | 4, 19, 33, 59, 123, 136, 159, 178, 184, 189, 216, 222, 232 |
| abstract_inverted_index.on | 100, 228 |
| abstract_inverted_index.or | 88, 145 |
| abstract_inverted_index.to | 24, 47, 214, 246 |
| abstract_inverted_index.(or | 120 |
| abstract_inverted_index.400 | 162 |
| abstract_inverted_index.The | 55, 219 |
| abstract_inverted_index.and | 51, 63, 128, 143, 155, 175, 242, 257, 263 |
| abstract_inverted_index.did | 210 |
| abstract_inverted_index.due | 213 |
| abstract_inverted_index.for | 108 |
| abstract_inverted_index.has | 226 |
| abstract_inverted_index.key | 230 |
| abstract_inverted_index.no. | 215 |
| abstract_inverted_index.not | 20, 211 |
| abstract_inverted_index.put | 25 |
| abstract_inverted_index.the | 5, 68, 72, 75, 84, 103, 134, 157, 179, 223, 229, 239, 243, 248, 260, 266 |
| abstract_inverted_index.(now | 206 |
| abstract_inverted_index.2018 | 196 |
| abstract_inverted_index.2019 | 205 |
| abstract_inverted_index.Data | 233 |
| abstract_inverted_index.June | 169, 204 |
| abstract_inverted_index.Note | 186 |
| abstract_inverted_index.This | 16, 148 |
| abstract_inverted_index.area | 183 |
| abstract_inverted_index.data | 6, 27, 30, 42, 49, 126, 138, 241 |
| abstract_inverted_index.form | 13 |
| abstract_inverted_index.gaps | 258 |
| abstract_inverted_index.have | 132 |
| abstract_inverted_index.high | 107 |
| abstract_inverted_index.lead | 73 |
| abstract_inverted_index.more | 160, 208 |
| abstract_inverted_index.most | 3 |
| abstract_inverted_index.next | 267 |
| abstract_inverted_index.over | 74 |
| abstract_inverted_index.poor | 114 |
| abstract_inverted_index.role | 231 |
| abstract_inverted_index.than | 161 |
| abstract_inverted_index.that | 187 |
| abstract_inverted_index.this | 26, 118, 182, 190, 252, 272 |
| abstract_inverted_index.till | 194 |
| abstract_inverted_index.used | 245 |
| abstract_inverted_index.will | 105, 192, 200 |
| abstract_inverted_index.(real | 7 |
| abstract_inverted_index.(till | 168 |
| abstract_inverted_index.class | 62, 70, 86 |
| abstract_inverted_index.data, | 102 |
| abstract_inverted_index.equal | 89 |
| abstract_inverted_index.focus | 227 |
| abstract_inverted_index.great | 45 |
| abstract_inverted_index.i.e., | 111 |
| abstract_inverted_index.level | 142 |
| abstract_inverted_index.poses | 43 |
| abstract_inverted_index.takes | 71 |
| abstract_inverted_index.these | 97, 207 |
| abstract_inverted_index.using | 139 |
| abstract_inverted_index.where | 67 |
| abstract_inverted_index.which | 199 |
| abstract_inverted_index.(both) | 48 |
| abstract_inverted_index.(i.e., | 28 |
| abstract_inverted_index.2017), | 170 |
| abstract_inverted_index.assume | 83 |
| abstract_inverted_index.class, | 66 |
| abstract_inverted_index.class. | 77 |
| abstract_inverted_index.costs. | 91 |
| abstract_inverted_index.having | 21 |
| abstract_inverted_index.hybrid | 146 |
| abstract_inverted_index.mining | 50, 127 |
| abstract_inverted_index.papers | 164 |
| abstract_inverted_index.review | 154 |
| abstract_inverted_index.skewed | 249 |
| abstract_inverted_index.trends | 256 |
| abstract_inverted_index.world) | 8 |
| abstract_inverted_index.world, | 2 |
| abstract_inverted_index.(IoTs)) | 37 |
| abstract_inverted_index.analyze | 156 |
| abstract_inverted_index.article | 149, 253 |
| abstract_inverted_index.because | 18 |
| abstract_inverted_index.between | 166 |
| abstract_inverted_index.billion | 32 |
| abstract_inverted_index.briefly | 265 |
| abstract_inverted_index.broader | 174 |
| abstract_inverted_index.contain | 193 |
| abstract_inverted_index.dataset | 57 |
| abstract_inverted_index.devices | 36 |
| abstract_inverted_index.format. | 40 |
| abstract_inverted_index.include | 212 |
| abstract_inverted_index.machine | 52, 129 |
| abstract_inverted_index.nature. | 15 |
| abstract_inverted_index.present | 10 |
| abstract_inverted_index.problem | 119, 135 |
| abstract_inverted_index.results | 158 |
| abstract_inverted_index.reveals | 254 |
| abstract_inverted_index.several | 79 |
| abstract_inverted_index.December | 195 |
| abstract_inverted_index.Problems | 235 |
| abstract_inverted_index.accuracy | 104, 122 |
| abstract_inverted_index.analysis | 221 |
| abstract_inverted_index.balanced | 85 |
| abstract_inverted_index.classes, | 110 |
| abstract_inverted_index.consists | 58 |
| abstract_inverted_index.ensemble | 144 |
| abstract_inverted_index.existing | 261 |
| abstract_inverted_index.handling | 238 |
| abstract_inverted_index.issues). | 218 |
| abstract_inverted_index.learning | 53, 81, 98, 130 |
| abstract_inverted_index.majority | 61, 69, 109 |
| abstract_inverted_index.methods. | 147 |
| abstract_inverted_index.minority | 65, 76 |
| abstract_inverted_index.overcome | 117, 247 |
| abstract_inverted_index.presents | 150 |
| abstract_inverted_index.research | 163, 197, 224, 269 |
| abstract_inverted_index.standard | 80 |
| abstract_inverted_index.2002-2017 | 167 |
| abstract_inverted_index.Intrinsic | 234 |
| abstract_inverted_index.addressed | 133 |
| abstract_inverted_index.articles, | 198 |
| abstract_inverted_index.challenge | 46 |
| abstract_inverted_index.connected | 35 |
| abstract_inverted_index.discusses | 264 |
| abstract_inverted_index.efficient | 22 |
| abstract_inverted_index.elaborate | 176 |
| abstract_inverted_index.extension | 188 |
| abstract_inverted_index.generated | 29 |
| abstract_inverted_index.improving | 121 |
| abstract_inverted_index.internet- | 34 |
| abstract_inverted_index.patterns, | 255 |
| abstract_inverted_index.performed | 95 |
| abstract_inverted_index.process), | 125 |
| abstract_inverted_index.published | 165, 202 |
| abstract_inverted_index.research. | 185 |
| abstract_inverted_index.resulting | 112, 171 |
| abstract_inverted_index.Generally, | 78 |
| abstract_inverted_index.Imbalanced | 41 |
| abstract_inverted_index.algorithms | 23, 82, 99 |
| abstract_inverted_index.directions | 270 |
| abstract_inverted_index.generation | 268 |
| abstract_inverted_index.imbalanced | 12, 56, 101, 137, 240 |
| abstract_inverted_index.literature | 153, 180, 225, 262 |
| abstract_inverted_index.prediction | 93 |
| abstract_inverted_index.respective | 39 |
| abstract_inverted_index.systematic | 152, 220 |
| abstract_inverted_index.techniques | 244 |
| abstract_inverted_index.<p>In | 0 |
| abstract_inverted_index.algorithmic | 141 |
| abstract_inverted_index.algorithms. | 54 |
| abstract_inverted_index.data-level, | 140 |
| abstract_inverted_index.pages/space | 217 |
| abstract_inverted_index.researchers | 131 |
| abstract_inverted_index.Furthermore, | 251 |
| abstract_inverted_index.article/work | 191 |
| abstract_inverted_index.distribution | 87 |
| abstract_inverted_index.performance. | 115 |
| abstract_inverted_index.distribution. | 250 |
| abstract_inverted_index.investigation | 177 |
| abstract_inverted_index.area.</p> | 273 |
| abstract_inverted_index.classification, | 237 |
| abstract_inverted_index.papers/articles | 209 |
| abstract_inverted_index.misclassification | 90 |
| abstract_inverted_index.today&rsquo;s | 1 |
| abstract_inverted_index.deision/prediction-making | 124 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5039774878 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I875944469 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile.value | 0.89296163 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |