A workflow for segmenting soil and plant X-ray CT images with deep\n learning in Googles Colaboratory Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2203.09674
X-ray micro-computed tomography (X-ray microCT) has enabled the\ncharacterization of the properties and processes that take place in plants and\nsoils at the micron scale. Despite the widespread use of this advanced\ntechnique, major limitations in both hardware and software limit the speed and\naccuracy of image processing and data analysis. Recent advances in machine\nlearning, specifically the application of convolutional neural networks to\nimage analysis, have enabled rapid and accurate segmentation of image data.\nYet, challenges remain in applying convolutional neural networks to the\nanalysis of environmentally and agriculturally relevant images. Specifically,\nthere is a disconnect between the computer scientists and engineers, who build\nthese AI/ML tools, and the potential end users in agricultural research, who\nmay be unsure of how to apply these tools in their work. Additionally, the\ncomputing resources required for training and applying deep learning models are\nunique, more common to computer gaming systems or graphics design work, than to\ntraditional computational systems. To navigate these challenges, we developed a\nmodular workflow for applying convolutional neural networks to X-ray microCT\nimages, using low-cost resources in Googles Colaboratory web application. Here\nwe present the results of the workflow, illustrating how parameters can be\noptimized to achieve best results using example scans from walnut leaves,\nalmond flower buds, and a soil aggregate. We expect that this framework will\naccelerate the adoption and use of emerging deep learning techniques within the\nplant and soil sciences.\n
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2203.09674
- https://arxiv.org/pdf/2203.09674
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4288012749
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4288012749Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2203.09674Digital Object Identifier
- Title
-
A workflow for segmenting soil and plant X-ray CT images with deep\n learning in Googles ColaboratoryWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-17Full publication date if available
- Authors
-
Devin A. Rippner, P. M. Siva Raja, J. Mason Earles, Alexander C. Buchko, Mina Momayyezi, Fiona Duong, Dilworth Y. Parkinson, Elizabeth J. Forrestel, Ken Shackel, Jeffrey Neyhart, Andrew J. McElroneList of authors in order
- Landing page
-
https://arxiv.org/abs/2203.09674Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2203.09674Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2203.09674Direct OA link when available
- Concepts
-
Workflow, Convolutional neural network, Computer science, Deep learning, Artificial intelligence, Modular design, Machine learning, Segmentation, Software, Artificial neural network, Image processing, Data science, Image (mathematics), Database, Operating system, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4288012749 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2203.09674 |
| ids.openalex | https://openalex.org/W4288012749 |
| fwci | 0.17770135 |
| type | preprint |
| title | A workflow for segmenting soil and plant X-ray CT images with deep\n learning in Googles Colaboratory |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9722999930381775 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C177212765 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8908951282501221 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q627335 |
| concepts[0].display_name | Workflow |
| concepts[1].id | https://openalex.org/C81363708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7528578042984009 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[1].display_name | Convolutional neural network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7282547950744629 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6383915543556213 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.582217812538147 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C101468663 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5766204595565796 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1620158 |
| concepts[5].display_name | Modular design |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5028614401817322 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C89600930 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5007853507995605 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[7].display_name | Segmentation |
| concepts[8].id | https://openalex.org/C2777904410 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4755411148071289 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[8].display_name | Software |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4556972086429596 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C9417928 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4356381893157959 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[10].display_name | Image processing |
| concepts[11].id | https://openalex.org/C2522767166 |
| concepts[11].level | 1 |
| concepts[11].score | 0.33243274688720703 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[11].display_name | Data science |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.28310444951057434 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| concepts[13].id | https://openalex.org/C77088390 |
| concepts[13].level | 1 |
| concepts[13].score | 0.11688888072967529 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[13].display_name | Database |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/workflow |
| keywords[0].score | 0.8908951282501221 |
| keywords[0].display_name | Workflow |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.7528578042984009 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7282547950744629 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/deep-learning |
| keywords[3].score | 0.6383915543556213 |
| keywords[3].display_name | Deep learning |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.582217812538147 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/modular-design |
| keywords[5].score | 0.5766204595565796 |
| keywords[5].display_name | Modular design |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.5028614401817322 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/segmentation |
| keywords[7].score | 0.5007853507995605 |
| keywords[7].display_name | Segmentation |
| keywords[8].id | https://openalex.org/keywords/software |
| keywords[8].score | 0.4755411148071289 |
| keywords[8].display_name | Software |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.4556972086429596 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/image-processing |
| keywords[10].score | 0.4356381893157959 |
| keywords[10].display_name | Image processing |
| keywords[11].id | https://openalex.org/keywords/data-science |
| keywords[11].score | 0.33243274688720703 |
| keywords[11].display_name | Data science |
| keywords[12].id | https://openalex.org/keywords/image |
| keywords[12].score | 0.28310444951057434 |
| keywords[12].display_name | Image (mathematics) |
| keywords[13].id | https://openalex.org/keywords/database |
| keywords[13].score | 0.11688888072967529 |
| keywords[13].display_name | Database |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2203.09674 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2203.09674 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2203.09674 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5059953895 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0206-8477 |
| authorships[0].author.display_name | Devin A. Rippner |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rippner, Devin A. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5110781736 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | P. M. Siva Raja |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Raja, Pranav |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5103204587 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7611-1696 |
| authorships[2].author.display_name | J. Mason Earles |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Earles, J. Mason |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5006018170 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Alexander C. Buchko |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Buchko, Alexander |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5048484576 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8039-3681 |
| authorships[4].author.display_name | Mina Momayyezi |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Momayyezi, Mina |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5009515919 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Fiona Duong |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Duong, Fiona |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5015137668 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1817-0716 |
| authorships[6].author.display_name | Dilworth Y. Parkinson |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Parkinson, Dilworth |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5071122437 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Elizabeth J. Forrestel |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Forrestel, Elizabeth |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5102117770 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Ken Shackel |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Shackel, Ken |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5054104412 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-1991-5310 |
| authorships[9].author.display_name | Jeffrey Neyhart |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Neyhart, Jeffrey |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5022882684 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-9466-4761 |
| authorships[10].author.display_name | Andrew J. McElrone |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | McElrone, Andrew J. |
| authorships[10].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2203.09674 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-07-26T00:00:00 |
| display_name | A workflow for segmenting soil and plant X-ray CT images with deep\n learning in Googles Colaboratory |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9722999930381775 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W1981780420, https://openalex.org/W2182707996, https://openalex.org/W4226493464, https://openalex.org/W4312417841, https://openalex.org/W3193565141, https://openalex.org/W3133861977, https://openalex.org/W2951211570, https://openalex.org/W3167935049, https://openalex.org/W3103566983, https://openalex.org/W3029198973 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2203.09674 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2203.09674 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2203.09674 |
| primary_location.id | pmh:oai:arXiv.org:2203.09674 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2203.09674 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2203.09674 |
| publication_date | 2022-03-17 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 86, 193 |
| abstract_inverted_index.To | 144 |
| abstract_inverted_index.We | 196 |
| abstract_inverted_index.at | 19 |
| abstract_inverted_index.be | 107 |
| abstract_inverted_index.in | 16, 32, 49, 71, 103, 115, 163 |
| abstract_inverted_index.is | 85 |
| abstract_inverted_index.of | 8, 27, 41, 54, 66, 78, 109, 172, 206 |
| abstract_inverted_index.or | 136 |
| abstract_inverted_index.to | 76, 111, 132, 157, 180 |
| abstract_inverted_index.we | 148 |
| abstract_inverted_index.and | 11, 35, 44, 63, 80, 92, 98, 124, 192, 204, 213 |
| abstract_inverted_index.can | 178 |
| abstract_inverted_index.end | 101 |
| abstract_inverted_index.for | 122, 152 |
| abstract_inverted_index.has | 5 |
| abstract_inverted_index.how | 110, 176 |
| abstract_inverted_index.the | 9, 20, 24, 38, 52, 89, 99, 170, 173, 202 |
| abstract_inverted_index.use | 26, 205 |
| abstract_inverted_index.web | 166 |
| abstract_inverted_index.who | 94 |
| abstract_inverted_index.best | 182 |
| abstract_inverted_index.both | 33 |
| abstract_inverted_index.data | 45 |
| abstract_inverted_index.deep | 126, 208 |
| abstract_inverted_index.from | 187 |
| abstract_inverted_index.have | 60 |
| abstract_inverted_index.more | 130 |
| abstract_inverted_index.soil | 194, 214 |
| abstract_inverted_index.take | 14 |
| abstract_inverted_index.than | 140 |
| abstract_inverted_index.that | 13, 198 |
| abstract_inverted_index.this | 28, 199 |
| abstract_inverted_index.AI/ML | 96 |
| abstract_inverted_index.X-ray | 0, 158 |
| abstract_inverted_index.apply | 112 |
| abstract_inverted_index.buds, | 191 |
| abstract_inverted_index.image | 42, 67 |
| abstract_inverted_index.limit | 37 |
| abstract_inverted_index.major | 30 |
| abstract_inverted_index.place | 15 |
| abstract_inverted_index.rapid | 62 |
| abstract_inverted_index.scans | 186 |
| abstract_inverted_index.speed | 39 |
| abstract_inverted_index.their | 116 |
| abstract_inverted_index.these | 113, 146 |
| abstract_inverted_index.tools | 114 |
| abstract_inverted_index.users | 102 |
| abstract_inverted_index.using | 160, 184 |
| abstract_inverted_index.work, | 139 |
| abstract_inverted_index.work. | 117 |
| abstract_inverted_index.(X-ray | 3 |
| abstract_inverted_index.Recent | 47 |
| abstract_inverted_index.common | 131 |
| abstract_inverted_index.design | 138 |
| abstract_inverted_index.expect | 197 |
| abstract_inverted_index.flower | 190 |
| abstract_inverted_index.gaming | 134 |
| abstract_inverted_index.micron | 21 |
| abstract_inverted_index.models | 128 |
| abstract_inverted_index.neural | 56, 74, 155 |
| abstract_inverted_index.plants | 17 |
| abstract_inverted_index.remain | 70 |
| abstract_inverted_index.scale. | 22 |
| abstract_inverted_index.tools, | 97 |
| abstract_inverted_index.unsure | 108 |
| abstract_inverted_index.walnut | 188 |
| abstract_inverted_index.within | 211 |
| abstract_inverted_index.Despite | 23 |
| abstract_inverted_index.Googles | 164 |
| abstract_inverted_index.achieve | 181 |
| abstract_inverted_index.between | 88 |
| abstract_inverted_index.enabled | 6, 61 |
| abstract_inverted_index.example | 185 |
| abstract_inverted_index.images. | 83 |
| abstract_inverted_index.present | 169 |
| abstract_inverted_index.results | 171, 183 |
| abstract_inverted_index.systems | 135 |
| abstract_inverted_index.Here\nwe | 168 |
| abstract_inverted_index.accurate | 64 |
| abstract_inverted_index.adoption | 203 |
| abstract_inverted_index.advances | 48 |
| abstract_inverted_index.applying | 72, 125, 153 |
| abstract_inverted_index.computer | 90, 133 |
| abstract_inverted_index.emerging | 207 |
| abstract_inverted_index.graphics | 137 |
| abstract_inverted_index.hardware | 34 |
| abstract_inverted_index.learning | 127, 209 |
| abstract_inverted_index.low-cost | 161 |
| abstract_inverted_index.microCT) | 4 |
| abstract_inverted_index.navigate | 145 |
| abstract_inverted_index.networks | 57, 75, 156 |
| abstract_inverted_index.relevant | 82 |
| abstract_inverted_index.required | 121 |
| abstract_inverted_index.software | 36 |
| abstract_inverted_index.systems. | 143 |
| abstract_inverted_index.training | 123 |
| abstract_inverted_index.who\nmay | 106 |
| abstract_inverted_index.workflow | 151 |
| abstract_inverted_index.analysis, | 59 |
| abstract_inverted_index.analysis. | 46 |
| abstract_inverted_index.developed | 149 |
| abstract_inverted_index.framework | 200 |
| abstract_inverted_index.potential | 100 |
| abstract_inverted_index.processes | 12 |
| abstract_inverted_index.research, | 105 |
| abstract_inverted_index.resources | 120, 162 |
| abstract_inverted_index.to\nimage | 58 |
| abstract_inverted_index.workflow, | 174 |
| abstract_inverted_index.a\nmodular | 150 |
| abstract_inverted_index.aggregate. | 195 |
| abstract_inverted_index.and\nsoils | 18 |
| abstract_inverted_index.challenges | 69 |
| abstract_inverted_index.disconnect | 87 |
| abstract_inverted_index.engineers, | 93 |
| abstract_inverted_index.parameters | 177 |
| abstract_inverted_index.processing | 43 |
| abstract_inverted_index.properties | 10 |
| abstract_inverted_index.scientists | 91 |
| abstract_inverted_index.techniques | 210 |
| abstract_inverted_index.the\nplant | 212 |
| abstract_inverted_index.tomography | 2 |
| abstract_inverted_index.widespread | 25 |
| abstract_inverted_index.application | 53 |
| abstract_inverted_index.challenges, | 147 |
| abstract_inverted_index.data.\nYet, | 68 |
| abstract_inverted_index.limitations | 31 |
| abstract_inverted_index.sciences.\n | 215 |
| abstract_inverted_index.Colaboratory | 165 |
| abstract_inverted_index.agricultural | 104 |
| abstract_inverted_index.application. | 167 |
| abstract_inverted_index.are\nunique, | 129 |
| abstract_inverted_index.build\nthese | 95 |
| abstract_inverted_index.illustrating | 175 |
| abstract_inverted_index.segmentation | 65 |
| abstract_inverted_index.specifically | 51 |
| abstract_inverted_index.Additionally, | 118 |
| abstract_inverted_index.and\naccuracy | 40 |
| abstract_inverted_index.be\noptimized | 179 |
| abstract_inverted_index.computational | 142 |
| abstract_inverted_index.convolutional | 55, 73, 154 |
| abstract_inverted_index.the\nanalysis | 77 |
| abstract_inverted_index.agriculturally | 81 |
| abstract_inverted_index.micro-computed | 1 |
| abstract_inverted_index.the\ncomputing | 119 |
| abstract_inverted_index.environmentally | 79 |
| abstract_inverted_index.leaves,\nalmond | 189 |
| abstract_inverted_index.to\ntraditional | 141 |
| abstract_inverted_index.microCT\nimages, | 159 |
| abstract_inverted_index.will\naccelerate | 201 |
| abstract_inverted_index.machine\nlearning, | 50 |
| abstract_inverted_index.Specifically,\nthere | 84 |
| abstract_inverted_index.advanced\ntechnique, | 29 |
| abstract_inverted_index.the\ncharacterization | 7 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 11 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.66666667 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |