AAD-LLM: Adaptive Anomaly Detection Using Large Language Models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.00914
For data-constrained, complex and dynamic industrial environments, there is a critical need for transferable and multimodal methodologies to enhance anomaly detection and therefore, prevent costs associated with system failures. Typically, traditional PdM approaches are not transferable or multimodal. This work examines the use of Large Language Models (LLMs) for anomaly detection in complex and dynamic manufacturing systems. The research aims to improve the transferability of anomaly detection models by leveraging Large Language Models (LLMs) and seeks to validate the enhanced effectiveness of the proposed approach in data-sparse industrial applications. The research also seeks to enable more collaborative decision-making between the model and plant operators by allowing for the enriching of input series data with semantics. Additionally, the research aims to address the issue of concept drift in dynamic industrial settings by integrating an adaptability mechanism. The literature review examines the latest developments in LLM time series tasks alongside associated adaptive anomaly detection methods to establish a robust theoretical framework for the proposed architecture. This paper presents a novel model framework (AAD-LLM) that doesn't require any training or finetuning on the dataset it is applied to and is multimodal. Results suggest that anomaly detection can be converted into a "language" task to deliver effective, context-aware detection in data-constrained industrial applications. This work, therefore, contributes significantly to advancements in anomaly detection methodologies.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.00914
- https://arxiv.org/pdf/2411.00914
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404350858
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404350858Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.00914Digital Object Identifier
- Title
-
AAD-LLM: Adaptive Anomaly Detection Using Large Language ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-01Full publication date if available
- Authors
-
Alicia Russell-Gilbert, Alexander Sommers, Andrew Thompson, Logan Cummins, Sudip Mittal, Shahram Rahimi, Maria Seale, Joseph Jaboure, Thomas Arnold, Joshua ChurchList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.00914Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.00914Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.00914Direct OA link when available
- Concepts
-
Anomaly (physics), Anomaly detection, Computer science, Artificial intelligence, Physics, Condensed matter physicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404350858 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.00914 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.00914 |
| ids.openalex | https://openalex.org/W4404350858 |
| fwci | |
| type | preprint |
| title | AAD-LLM: Adaptive Anomaly Detection Using Large Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9761000275611877 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10400 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9682000279426575 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Network Security and Intrusion Detection |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9386000037193298 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C12997251 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6582134962081909 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q567560 |
| concepts[0].display_name | Anomaly (physics) |
| concepts[1].id | https://openalex.org/C739882 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5794845223426819 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[1].display_name | Anomaly detection |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.47377681732177734 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.29982906579971313 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C121332964 |
| concepts[4].level | 0 |
| concepts[4].score | 0.11207571625709534 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[4].display_name | Physics |
| concepts[5].id | https://openalex.org/C26873012 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q214781 |
| concepts[5].display_name | Condensed matter physics |
| keywords[0].id | https://openalex.org/keywords/anomaly |
| keywords[0].score | 0.6582134962081909 |
| keywords[0].display_name | Anomaly (physics) |
| keywords[1].id | https://openalex.org/keywords/anomaly-detection |
| keywords[1].score | 0.5794845223426819 |
| keywords[1].display_name | Anomaly detection |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.47377681732177734 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.29982906579971313 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/physics |
| keywords[4].score | 0.11207571625709534 |
| keywords[4].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.00914 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.00914 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.00914 |
| locations[1].id | doi:10.48550/arxiv.2411.00914 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.00914 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5114637045 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Alicia Russell-Gilbert |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Russell-Gilbert, Alicia |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5040365381 |
| authorships[1].author.orcid | https://orcid.org/0009-0007-5367-4788 |
| authorships[1].author.display_name | Alexander Sommers |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sommers, Alexander |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101752265 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4580-0357 |
| authorships[2].author.display_name | Andrew Thompson |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Thompson, Andrew |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5067308609 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3875-4137 |
| authorships[3].author.display_name | Logan Cummins |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Cummins, Logan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5074949168 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9151-8347 |
| authorships[4].author.display_name | Sudip Mittal |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Mittal, Sudip |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5009452693 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2779-0076 |
| authorships[5].author.display_name | Shahram Rahimi |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Rahimi, Shahram |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5032889863 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3858-0381 |
| authorships[6].author.display_name | Maria Seale |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Seale, Maria |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5095699506 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Joseph Jaboure |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Jaboure, Joseph |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5099044662 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Thomas Arnold |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Arnold, Thomas |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5081201156 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Joshua Church |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Church, Joshua |
| authorships[9].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.00914 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | AAD-LLM: Adaptive Anomaly Detection Using Large Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9761000275611877 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2806741695, https://openalex.org/W4290647774, https://openalex.org/W3189286258, https://openalex.org/W3207797160, https://openalex.org/W3210364259, https://openalex.org/W4300558037, https://openalex.org/W2667207928, https://openalex.org/W2912112202, https://openalex.org/W4377864969, https://openalex.org/W3120251014 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.00914 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.00914 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.00914 |
| primary_location.id | pmh:oai:arXiv.org:2411.00914 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.00914 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.00914 |
| publication_date | 2024-11-01 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 9, 155, 166, 197 |
| abstract_inverted_index.an | 132 |
| abstract_inverted_index.be | 194 |
| abstract_inverted_index.by | 68, 104, 130 |
| abstract_inverted_index.in | 51, 85, 126, 142, 205, 216 |
| abstract_inverted_index.is | 8, 182, 186 |
| abstract_inverted_index.it | 181 |
| abstract_inverted_index.of | 43, 64, 81, 109, 123 |
| abstract_inverted_index.on | 178 |
| abstract_inverted_index.or | 36, 176 |
| abstract_inverted_index.to | 17, 60, 76, 93, 119, 153, 184, 200, 214 |
| abstract_inverted_index.For | 0 |
| abstract_inverted_index.LLM | 143 |
| abstract_inverted_index.PdM | 31 |
| abstract_inverted_index.The | 57, 89, 135 |
| abstract_inverted_index.and | 3, 14, 21, 53, 74, 101, 185 |
| abstract_inverted_index.any | 174 |
| abstract_inverted_index.are | 33 |
| abstract_inverted_index.can | 193 |
| abstract_inverted_index.for | 12, 48, 106, 159 |
| abstract_inverted_index.not | 34 |
| abstract_inverted_index.the | 41, 62, 78, 82, 99, 107, 116, 121, 139, 160, 179 |
| abstract_inverted_index.use | 42 |
| abstract_inverted_index.This | 38, 163, 209 |
| abstract_inverted_index.aims | 59, 118 |
| abstract_inverted_index.also | 91 |
| abstract_inverted_index.data | 112 |
| abstract_inverted_index.into | 196 |
| abstract_inverted_index.more | 95 |
| abstract_inverted_index.need | 11 |
| abstract_inverted_index.task | 199 |
| abstract_inverted_index.that | 171, 190 |
| abstract_inverted_index.time | 144 |
| abstract_inverted_index.with | 26, 113 |
| abstract_inverted_index.work | 39 |
| abstract_inverted_index.Large | 44, 70 |
| abstract_inverted_index.costs | 24 |
| abstract_inverted_index.drift | 125 |
| abstract_inverted_index.input | 110 |
| abstract_inverted_index.issue | 122 |
| abstract_inverted_index.model | 100, 168 |
| abstract_inverted_index.novel | 167 |
| abstract_inverted_index.paper | 164 |
| abstract_inverted_index.plant | 102 |
| abstract_inverted_index.seeks | 75, 92 |
| abstract_inverted_index.tasks | 146 |
| abstract_inverted_index.there | 7 |
| abstract_inverted_index.work, | 210 |
| abstract_inverted_index.(LLMs) | 47, 73 |
| abstract_inverted_index.Models | 46, 72 |
| abstract_inverted_index.enable | 94 |
| abstract_inverted_index.latest | 140 |
| abstract_inverted_index.models | 67 |
| abstract_inverted_index.review | 137 |
| abstract_inverted_index.robust | 156 |
| abstract_inverted_index.series | 111, 145 |
| abstract_inverted_index.system | 27 |
| abstract_inverted_index.Results | 188 |
| abstract_inverted_index.address | 120 |
| abstract_inverted_index.anomaly | 19, 49, 65, 150, 191, 217 |
| abstract_inverted_index.applied | 183 |
| abstract_inverted_index.between | 98 |
| abstract_inverted_index.complex | 2, 52 |
| abstract_inverted_index.concept | 124 |
| abstract_inverted_index.dataset | 180 |
| abstract_inverted_index.deliver | 201 |
| abstract_inverted_index.doesn't | 172 |
| abstract_inverted_index.dynamic | 4, 54, 127 |
| abstract_inverted_index.enhance | 18 |
| abstract_inverted_index.improve | 61 |
| abstract_inverted_index.methods | 152 |
| abstract_inverted_index.prevent | 23 |
| abstract_inverted_index.require | 173 |
| abstract_inverted_index.suggest | 189 |
| abstract_inverted_index.Language | 45, 71 |
| abstract_inverted_index.adaptive | 149 |
| abstract_inverted_index.allowing | 105 |
| abstract_inverted_index.approach | 84 |
| abstract_inverted_index.critical | 10 |
| abstract_inverted_index.enhanced | 79 |
| abstract_inverted_index.examines | 40, 138 |
| abstract_inverted_index.presents | 165 |
| abstract_inverted_index.proposed | 83, 161 |
| abstract_inverted_index.research | 58, 90, 117 |
| abstract_inverted_index.settings | 129 |
| abstract_inverted_index.systems. | 56 |
| abstract_inverted_index.training | 175 |
| abstract_inverted_index.validate | 77 |
| abstract_inverted_index.(AAD-LLM) | 170 |
| abstract_inverted_index.alongside | 147 |
| abstract_inverted_index.converted | 195 |
| abstract_inverted_index.detection | 20, 50, 66, 151, 192, 204, 218 |
| abstract_inverted_index.enriching | 108 |
| abstract_inverted_index.establish | 154 |
| abstract_inverted_index.failures. | 28 |
| abstract_inverted_index.framework | 158, 169 |
| abstract_inverted_index.operators | 103 |
| abstract_inverted_index."language" | 198 |
| abstract_inverted_index.Typically, | 29 |
| abstract_inverted_index.approaches | 32 |
| abstract_inverted_index.associated | 25, 148 |
| abstract_inverted_index.effective, | 202 |
| abstract_inverted_index.finetuning | 177 |
| abstract_inverted_index.industrial | 5, 87, 128, 207 |
| abstract_inverted_index.leveraging | 69 |
| abstract_inverted_index.literature | 136 |
| abstract_inverted_index.mechanism. | 134 |
| abstract_inverted_index.multimodal | 15 |
| abstract_inverted_index.semantics. | 114 |
| abstract_inverted_index.therefore, | 22, 211 |
| abstract_inverted_index.contributes | 212 |
| abstract_inverted_index.data-sparse | 86 |
| abstract_inverted_index.integrating | 131 |
| abstract_inverted_index.multimodal. | 37, 187 |
| abstract_inverted_index.theoretical | 157 |
| abstract_inverted_index.traditional | 30 |
| abstract_inverted_index.adaptability | 133 |
| abstract_inverted_index.advancements | 215 |
| abstract_inverted_index.developments | 141 |
| abstract_inverted_index.transferable | 13, 35 |
| abstract_inverted_index.Additionally, | 115 |
| abstract_inverted_index.applications. | 88, 208 |
| abstract_inverted_index.architecture. | 162 |
| abstract_inverted_index.collaborative | 96 |
| abstract_inverted_index.context-aware | 203 |
| abstract_inverted_index.effectiveness | 80 |
| abstract_inverted_index.environments, | 6 |
| abstract_inverted_index.manufacturing | 55 |
| abstract_inverted_index.methodologies | 16 |
| abstract_inverted_index.significantly | 213 |
| abstract_inverted_index.methodologies. | 219 |
| abstract_inverted_index.decision-making | 97 |
| abstract_inverted_index.transferability | 63 |
| abstract_inverted_index.data-constrained | 206 |
| abstract_inverted_index.data-constrained, | 1 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile |