AAM Based Features for Multiple Camera Visual Speech Recognition in Car Environment Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1016/j.procs.2015.07.417
This paper presents an Active Appearance Model (AAM) based multiple camera visual speech recognition (VSR) method using the shape and appearance information extracted from jaw and lip region to enhance the performance in mobile car cabin environments. Consideration of visual features along with traditional acoustic features have been found to be promising in complex auditory environment. Furthermore recent researches on multiple camera fusion to take care of pose information have shown promising result over single camera only. In this work a series of visual speech recognition experiments are carried out to study the influence of side and central faced camera on multistream visual speech recognizer. To have better information on visual articulators(Lip, Jaw etc) shape and texture model is built to extract the visual feature. Four camera audio visual corpus AVICAR is used in this research work. Individual camera streams are fused to have four stream synchronous Hidden Markov Model (SHMM) visual speech recognizer. The performance of the visual speech recognizer is improved by analyzing the relative impact of central frontal cameras with respect to side frontal cameras. Significant improvement is found compared to conventional Discrete Cosine Based(DCT) based visual features.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.procs.2015.07.417
- OA Status
- diamond
- Cited By
- 6
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2246503653
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2246503653Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.procs.2015.07.417Digital Object Identifier
- Title
-
AAM Based Features for Multiple Camera Visual Speech Recognition in Car EnvironmentWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-01-01Full publication date if available
- Authors
-
Astik Biswas, Prasanna Kumar Sahu, Anirban Bhowmick, Mahesh ChandraList of authors in order
- Landing page
-
https://doi.org/10.1016/j.procs.2015.07.417Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.procs.2015.07.417Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Hidden Markov model, Computer vision, Discrete cosine transform, Audio visual, Feature (linguistics), Speech recognition, Pattern recognition (psychology), Image (mathematics), Linguistics, Multimedia, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1, 2018: 1, 2017: 1, 2016: 2, 2015: 1Per-year citation counts (last 5 years)
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2246503653 |
|---|---|
| doi | https://doi.org/10.1016/j.procs.2015.07.417 |
| ids.doi | https://doi.org/10.1016/j.procs.2015.07.417 |
| ids.mag | 2246503653 |
| ids.openalex | https://openalex.org/W2246503653 |
| fwci | 1.36092987 |
| type | article |
| title | AAM Based Features for Multiple Camera Visual Speech Recognition in Car Environment |
| biblio.issue | |
| biblio.volume | 57 |
| biblio.last_page | 621 |
| biblio.first_page | 614 |
| topics[0].id | https://openalex.org/T10860 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Speech and Audio Processing |
| topics[1].id | https://openalex.org/T11448 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9975000023841858 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Face recognition and analysis |
| topics[2].id | https://openalex.org/T10331 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9944000244140625 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Video Surveillance and Tracking Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8935031294822693 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6590366363525391 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C23224414 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6150987148284912 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q176769 |
| concepts[2].display_name | Hidden Markov model |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6043441891670227 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C2221639 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5954234004020691 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2877 |
| concepts[4].display_name | Discrete cosine transform |
| concepts[5].id | https://openalex.org/C3017588708 |
| concepts[5].level | 2 |
| concepts[5].score | 0.507729172706604 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q758901 |
| concepts[5].display_name | Audio visual |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4995284080505371 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C28490314 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4344097375869751 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[7].display_name | Speech recognition |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3324200510978699 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C115961682 |
| concepts[9].level | 2 |
| concepts[9].score | 0.15888524055480957 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[9].display_name | Image (mathematics) |
| concepts[10].id | https://openalex.org/C41895202 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[10].display_name | Linguistics |
| concepts[11].id | https://openalex.org/C49774154 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q131765 |
| concepts[11].display_name | Multimedia |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8935031294822693 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6590366363525391 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/hidden-markov-model |
| keywords[2].score | 0.6150987148284912 |
| keywords[2].display_name | Hidden Markov model |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.6043441891670227 |
| keywords[3].display_name | Computer vision |
| keywords[4].id | https://openalex.org/keywords/discrete-cosine-transform |
| keywords[4].score | 0.5954234004020691 |
| keywords[4].display_name | Discrete cosine transform |
| keywords[5].id | https://openalex.org/keywords/audio-visual |
| keywords[5].score | 0.507729172706604 |
| keywords[5].display_name | Audio visual |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.4995284080505371 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/speech-recognition |
| keywords[7].score | 0.4344097375869751 |
| keywords[7].display_name | Speech recognition |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.3324200510978699 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/image |
| keywords[9].score | 0.15888524055480957 |
| keywords[9].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.1016/j.procs.2015.07.417 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S120348307 |
| locations[0].source.issn | 1877-0509 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1877-0509 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Procedia Computer Science |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Procedia Computer Science |
| locations[0].landing_page_url | https://doi.org/10.1016/j.procs.2015.07.417 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101908831 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3944-1631 |
| authorships[0].author.display_name | Astik Biswas |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I16292982 |
| authorships[0].affiliations[0].raw_affiliation_string | Dept of Electrical Engineering, National Institute of Technology, Rourkela, India-769008 |
| authorships[0].institutions[0].id | https://openalex.org/I16292982 |
| authorships[0].institutions[0].ror | https://ror.org/011gmn932 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I16292982 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | National Institute of Technology Rourkela |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Astik Biswas |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Dept of Electrical Engineering, National Institute of Technology, Rourkela, India-769008 |
| authorships[1].author.id | https://openalex.org/A5004636825 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6482-9139 |
| authorships[1].author.display_name | Prasanna Kumar Sahu |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I16292982 |
| authorships[1].affiliations[0].raw_affiliation_string | Dept of Electrical Engineering, National Institute of Technology, Rourkela, India-769008 |
| authorships[1].institutions[0].id | https://openalex.org/I16292982 |
| authorships[1].institutions[0].ror | https://ror.org/011gmn932 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I16292982 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | National Institute of Technology Rourkela |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | P.K. Sahu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Dept of Electrical Engineering, National Institute of Technology, Rourkela, India-769008 |
| authorships[2].author.id | https://openalex.org/A5004135053 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8023-0532 |
| authorships[2].author.display_name | Anirban Bhowmick |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I115715567 |
| authorships[2].affiliations[0].raw_affiliation_string | Dept of Electronics and Communication Engg., Birla Institute of Technology, Mesra, India-835215 |
| authorships[2].institutions[0].id | https://openalex.org/I115715567 |
| authorships[2].institutions[0].ror | https://ror.org/028vtqb15 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I115715567 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Birla Institute of Technology, Mesra |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Anirban Bhowmick |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Dept of Electronics and Communication Engg., Birla Institute of Technology, Mesra, India-835215 |
| authorships[3].author.id | https://openalex.org/A5066284552 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9892-5527 |
| authorships[3].author.display_name | Mahesh Chandra |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I115715567 |
| authorships[3].affiliations[0].raw_affiliation_string | Dept of Electronics and Communication Engg., Birla Institute of Technology, Mesra, India-835215 |
| authorships[3].institutions[0].id | https://openalex.org/I115715567 |
| authorships[3].institutions[0].ror | https://ror.org/028vtqb15 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I115715567 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Birla Institute of Technology, Mesra |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Mahesh Chandra |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Dept of Electronics and Communication Engg., Birla Institute of Technology, Mesra, India-835215 |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.procs.2015.07.417 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | AAM Based Features for Multiple Camera Visual Speech Recognition in Car Environment |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10860 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Speech and Audio Processing |
| related_works | https://openalex.org/W2101001931, https://openalex.org/W1504288058, https://openalex.org/W2331674254, https://openalex.org/W2167293474, https://openalex.org/W3042897387, https://openalex.org/W2048505601, https://openalex.org/W2017205855, https://openalex.org/W1591194399, https://openalex.org/W2538473751, https://openalex.org/W2979079341 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2018 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2017 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2016 |
| counts_by_year[3].cited_by_count | 2 |
| counts_by_year[4].year | 2015 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.procs.2015.07.417 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S120348307 |
| best_oa_location.source.issn | 1877-0509 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1877-0509 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Procedia Computer Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Procedia Computer Science |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.procs.2015.07.417 |
| primary_location.id | doi:10.1016/j.procs.2015.07.417 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S120348307 |
| primary_location.source.issn | 1877-0509 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1877-0509 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Procedia Computer Science |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Procedia Computer Science |
| primary_location.landing_page_url | https://doi.org/10.1016/j.procs.2015.07.417 |
| publication_date | 2015-01-01 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W2035777533, https://openalex.org/W6617943241, https://openalex.org/W2044111021, https://openalex.org/W2065286263, https://openalex.org/W2004143321, https://openalex.org/W196476531, https://openalex.org/W142945732, https://openalex.org/W6632648047, https://openalex.org/W2901253614, https://openalex.org/W6682634897, https://openalex.org/W2097711399, https://openalex.org/W2078517841, https://openalex.org/W2164598857, https://openalex.org/W6605737493, https://openalex.org/W596914141, https://openalex.org/W1516807289, https://openalex.org/W4285719527, https://openalex.org/W1542631809, https://openalex.org/W142803501, https://openalex.org/W56075855, https://openalex.org/W2172803778 |
| referenced_works_count | 21 |
| abstract_inverted_index.a | 80 |
| abstract_inverted_index.In | 77 |
| abstract_inverted_index.To | 105 |
| abstract_inverted_index.an | 3 |
| abstract_inverted_index.be | 50 |
| abstract_inverted_index.by | 163 |
| abstract_inverted_index.in | 32, 52, 133 |
| abstract_inverted_index.is | 118, 131, 161, 180 |
| abstract_inverted_index.of | 38, 66, 82, 94, 156, 168 |
| abstract_inverted_index.on | 59, 100, 109 |
| abstract_inverted_index.to | 28, 49, 63, 90, 120, 142, 174, 183 |
| abstract_inverted_index.Jaw | 112 |
| abstract_inverted_index.The | 154 |
| abstract_inverted_index.and | 19, 25, 96, 115 |
| abstract_inverted_index.are | 87, 140 |
| abstract_inverted_index.car | 34 |
| abstract_inverted_index.jaw | 24 |
| abstract_inverted_index.lip | 26 |
| abstract_inverted_index.out | 89 |
| abstract_inverted_index.the | 17, 30, 92, 122, 157, 165 |
| abstract_inverted_index.Four | 125 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.been | 47 |
| abstract_inverted_index.care | 65 |
| abstract_inverted_index.etc) | 113 |
| abstract_inverted_index.four | 144 |
| abstract_inverted_index.from | 23 |
| abstract_inverted_index.have | 46, 69, 106, 143 |
| abstract_inverted_index.over | 73 |
| abstract_inverted_index.pose | 67 |
| abstract_inverted_index.side | 95, 175 |
| abstract_inverted_index.take | 64 |
| abstract_inverted_index.this | 78, 134 |
| abstract_inverted_index.used | 132 |
| abstract_inverted_index.with | 42, 172 |
| abstract_inverted_index.work | 79 |
| abstract_inverted_index.(AAM) | 7 |
| abstract_inverted_index.(VSR) | 14 |
| abstract_inverted_index.Model | 6, 149 |
| abstract_inverted_index.along | 41 |
| abstract_inverted_index.audio | 127 |
| abstract_inverted_index.based | 8, 188 |
| abstract_inverted_index.built | 119 |
| abstract_inverted_index.cabin | 35 |
| abstract_inverted_index.faced | 98 |
| abstract_inverted_index.found | 48, 181 |
| abstract_inverted_index.fused | 141 |
| abstract_inverted_index.model | 117 |
| abstract_inverted_index.only. | 76 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.shape | 18, 114 |
| abstract_inverted_index.shown | 70 |
| abstract_inverted_index.study | 91 |
| abstract_inverted_index.using | 16 |
| abstract_inverted_index.work. | 136 |
| abstract_inverted_index.(SHMM) | 150 |
| abstract_inverted_index.AVICAR | 130 |
| abstract_inverted_index.Active | 4 |
| abstract_inverted_index.Cosine | 186 |
| abstract_inverted_index.Hidden | 147 |
| abstract_inverted_index.Markov | 148 |
| abstract_inverted_index.better | 107 |
| abstract_inverted_index.camera | 10, 61, 75, 99, 126, 138 |
| abstract_inverted_index.corpus | 129 |
| abstract_inverted_index.fusion | 62 |
| abstract_inverted_index.impact | 167 |
| abstract_inverted_index.method | 15 |
| abstract_inverted_index.mobile | 33 |
| abstract_inverted_index.recent | 57 |
| abstract_inverted_index.region | 27 |
| abstract_inverted_index.result | 72 |
| abstract_inverted_index.series | 81 |
| abstract_inverted_index.single | 74 |
| abstract_inverted_index.speech | 12, 84, 103, 152, 159 |
| abstract_inverted_index.stream | 145 |
| abstract_inverted_index.visual | 11, 39, 83, 102, 110, 123, 128, 151, 158, 189 |
| abstract_inverted_index.cameras | 171 |
| abstract_inverted_index.carried | 88 |
| abstract_inverted_index.central | 97, 169 |
| abstract_inverted_index.complex | 53 |
| abstract_inverted_index.enhance | 29 |
| abstract_inverted_index.extract | 121 |
| abstract_inverted_index.frontal | 170, 176 |
| abstract_inverted_index.respect | 173 |
| abstract_inverted_index.streams | 139 |
| abstract_inverted_index.texture | 116 |
| abstract_inverted_index.Discrete | 185 |
| abstract_inverted_index.acoustic | 44 |
| abstract_inverted_index.auditory | 54 |
| abstract_inverted_index.cameras. | 177 |
| abstract_inverted_index.compared | 182 |
| abstract_inverted_index.feature. | 124 |
| abstract_inverted_index.features | 40, 45 |
| abstract_inverted_index.improved | 162 |
| abstract_inverted_index.multiple | 9, 60 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.relative | 166 |
| abstract_inverted_index.research | 135 |
| abstract_inverted_index.analyzing | 164 |
| abstract_inverted_index.extracted | 22 |
| abstract_inverted_index.features. | 190 |
| abstract_inverted_index.influence | 93 |
| abstract_inverted_index.promising | 51, 71 |
| abstract_inverted_index.Appearance | 5 |
| abstract_inverted_index.Based(DCT) | 187 |
| abstract_inverted_index.Individual | 137 |
| abstract_inverted_index.appearance | 20 |
| abstract_inverted_index.recognizer | 160 |
| abstract_inverted_index.researches | 58 |
| abstract_inverted_index.Furthermore | 56 |
| abstract_inverted_index.Significant | 178 |
| abstract_inverted_index.experiments | 86 |
| abstract_inverted_index.improvement | 179 |
| abstract_inverted_index.information | 21, 68, 108 |
| abstract_inverted_index.multistream | 101 |
| abstract_inverted_index.performance | 31, 155 |
| abstract_inverted_index.recognition | 13, 85 |
| abstract_inverted_index.recognizer. | 104, 153 |
| abstract_inverted_index.synchronous | 146 |
| abstract_inverted_index.traditional | 43 |
| abstract_inverted_index.conventional | 184 |
| abstract_inverted_index.environment. | 55 |
| abstract_inverted_index.Consideration | 37 |
| abstract_inverted_index.environments. | 36 |
| abstract_inverted_index.articulators(Lip, | 111 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5101908831 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I16292982 |
| citation_normalized_percentile.value | 0.83679214 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |