Ability of Current Machine Learning Algorithms to Predict and Detect Hypoglycemia in Patients With Diabetes Mellitus: Meta-analysis (Preprint) Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.2196/preprints.22458
BACKGROUND Machine learning (ML) algorithms have been widely introduced to diabetes research including those for the identification of hypoglycemia. OBJECTIVE The objective of this meta-analysis is to assess the current ability of ML algorithms to detect hypoglycemia (ie, alert to hypoglycemia coinciding with its symptoms) or predict hypoglycemia (ie, alert to hypoglycemia before its symptoms have occurred). METHODS Electronic literature searches (from January 1, 1950, to September 14, 2020) were conducted using the Dialog platform that covers 96 databases of peer-reviewed literature. Included studies had to train the ML algorithm in order to build a model to detect or predict hypoglycemia and test its performance. The set of 2 × 2 data (ie, number of true positives, false positives, true negatives, and false negatives) was pooled with a hierarchical summary receiver operating characteristic model. RESULTS A total of 33 studies (14 studies for detecting hypoglycemia and 19 studies for predicting hypoglycemia) were eligible. For detection of hypoglycemia, pooled estimates (95% CI) of sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were 0.79 (0.75-0.83), 0.80 (0.64-0.91), 8.05 (4.79-13.51), and 0.18 (0.12-0.27), respectively. For prediction of hypoglycemia, pooled estimates (95% CI) were 0.80 (0.72-0.86) for sensitivity, 0.92 (0.87-0.96) for specificity, 10.42 (5.82-18.65) for PLR, and 0.22 (0.15-0.31) for NLR. CONCLUSIONS Current ML algorithms have insufficient ability to detect ongoing hypoglycemia and considerate ability to predict impeding hypoglycemia in patients with diabetes mellitus using hypoglycemic drugs with regard to diagnostic tests in accordance with the Users’ Guide to Medical Literature (PLR should be ≥5 and NLR should be ≤0.2 for moderate reliability). However, it should be emphasized that the clinical applicability of these ML algorithms should be evaluated according to patients’ risk profiles such as for hypoglycemia and its associated complications (eg, arrhythmia, neuroglycopenia) as well as the average ability of the ML algorithms. Continued research is required to develop more accurate ML algorithms than those that currently exist and to enhance the feasibility of applying ML in clinical settings. CLINICALTRIAL PROSPERO International Prospective Register of Systematic Reviews CRD42020163682; http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42020163682
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.2196/preprints.22458
- OA Status
- gold
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4249074052
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4249074052Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2196/preprints.22458Digital Object Identifier
- Title
-
Ability of Current Machine Learning Algorithms to Predict and Detect Hypoglycemia in Patients With Diabetes Mellitus: Meta-analysis (Preprint)Work title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-07-13Full publication date if available
- Authors
-
Satoru Kodama, Kazuya Fujihara, Haruka Shiozaki, Chika Horikawa, MAYUKO H. YAMADA, Takaaki Sato, Yuta Yaguchi, Masahiko Yamamoto, Masaru Kitazawa, Midori Iwanaga, Yasuhiro Matsubayashi, Hirohito SoneList of authors in order
- Landing page
-
https://doi.org/10.2196/preprints.22458Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2196/preprints.22458Direct OA link when available
- Concepts
-
Hypoglycemia, False positive paradox, Algorithm, Medicine, Meta-analysis, Machine learning, Diabetes mellitus, Artificial intelligence, Receiver operating characteristic, Internal medicine, Computer science, EndocrinologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4249074052 |
|---|---|
| doi | https://doi.org/10.2196/preprints.22458 |
| ids.doi | https://doi.org/10.2196/preprints.22458 |
| ids.openalex | https://openalex.org/W4249074052 |
| fwci | 0.0 |
| type | preprint |
| title | Ability of Current Machine Learning Algorithms to Predict and Detect Hypoglycemia in Patients With Diabetes Mellitus: Meta-analysis (Preprint) |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10560 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2712 |
| topics[0].subfield.display_name | Endocrinology, Diabetes and Metabolism |
| topics[0].display_name | Diabetes Management and Research |
| topics[1].id | https://openalex.org/T11623 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9937000274658203 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2712 |
| topics[1].subfield.display_name | Endocrinology, Diabetes and Metabolism |
| topics[1].display_name | Hyperglycemia and glycemic control in critically ill and hospitalized patients |
| topics[2].id | https://openalex.org/T10027 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.968999981880188 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2712 |
| topics[2].subfield.display_name | Endocrinology, Diabetes and Metabolism |
| topics[2].display_name | Diabetes, Cardiovascular Risks, and Lipoproteins |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780668416 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8592863082885742 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q202758 |
| concepts[0].display_name | Hypoglycemia |
| concepts[1].id | https://openalex.org/C64869954 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7013488411903381 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1859747 |
| concepts[1].display_name | False positive paradox |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6307857632637024 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| concepts[3].id | https://openalex.org/C71924100 |
| concepts[3].level | 0 |
| concepts[3].score | 0.578493058681488 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[3].display_name | Medicine |
| concepts[4].id | https://openalex.org/C95190672 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4720286428928375 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q815382 |
| concepts[4].display_name | Meta-analysis |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.45308366417884827 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C555293320 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4315081536769867 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12206 |
| concepts[6].display_name | Diabetes mellitus |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.42016226053237915 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C58471807 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4135562777519226 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q327120 |
| concepts[8].display_name | Receiver operating characteristic |
| concepts[9].id | https://openalex.org/C126322002 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3511708974838257 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[9].display_name | Internal medicine |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.2621312439441681 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C134018914 |
| concepts[11].level | 1 |
| concepts[11].score | 0.18482312560081482 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q162606 |
| concepts[11].display_name | Endocrinology |
| keywords[0].id | https://openalex.org/keywords/hypoglycemia |
| keywords[0].score | 0.8592863082885742 |
| keywords[0].display_name | Hypoglycemia |
| keywords[1].id | https://openalex.org/keywords/false-positive-paradox |
| keywords[1].score | 0.7013488411903381 |
| keywords[1].display_name | False positive paradox |
| keywords[2].id | https://openalex.org/keywords/algorithm |
| keywords[2].score | 0.6307857632637024 |
| keywords[2].display_name | Algorithm |
| keywords[3].id | https://openalex.org/keywords/medicine |
| keywords[3].score | 0.578493058681488 |
| keywords[3].display_name | Medicine |
| keywords[4].id | https://openalex.org/keywords/meta-analysis |
| keywords[4].score | 0.4720286428928375 |
| keywords[4].display_name | Meta-analysis |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.45308366417884827 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/diabetes-mellitus |
| keywords[6].score | 0.4315081536769867 |
| keywords[6].display_name | Diabetes mellitus |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.42016226053237915 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/receiver-operating-characteristic |
| keywords[8].score | 0.4135562777519226 |
| keywords[8].display_name | Receiver operating characteristic |
| keywords[9].id | https://openalex.org/keywords/internal-medicine |
| keywords[9].score | 0.3511708974838257 |
| keywords[9].display_name | Internal medicine |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.2621312439441681 |
| keywords[10].display_name | Computer science |
| keywords[11].id | https://openalex.org/keywords/endocrinology |
| keywords[11].score | 0.18482312560081482 |
| keywords[11].display_name | Endocrinology |
| language | en |
| locations[0].id | doi:10.2196/preprints.22458 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2196/preprints.22458 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5067858714 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9521-7274 |
| authorships[0].author.display_name | Satoru Kodama |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I71395657 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I71395657 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[0].institutions[0].id | https://openalex.org/I71395657 |
| authorships[0].institutions[0].ror | https://ror.org/04ww21r56 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I71395657 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | Niigata University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Satoru Kodama |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan, Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[1].author.id | https://openalex.org/A5042086791 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6725-4169 |
| authorships[1].author.display_name | Kazuya Fujihara |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I71395657 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[1].institutions[0].id | https://openalex.org/I71395657 |
| authorships[1].institutions[0].ror | https://ror.org/04ww21r56 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I71395657 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | Niigata University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kazuya Fujihara |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[2].author.id | https://openalex.org/A5022504745 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4137-0476 |
| authorships[2].author.display_name | Haruka Shiozaki |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I71395657 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[2].institutions[0].id | https://openalex.org/I71395657 |
| authorships[2].institutions[0].ror | https://ror.org/04ww21r56 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I71395657 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | Niigata University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Haruka Shiozaki |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[3].author.id | https://openalex.org/A5066232718 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4213-0252 |
| authorships[3].author.display_name | Chika Horikawa |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1288039508 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture, Niigata, Japan |
| authorships[3].institutions[0].id | https://openalex.org/I1288039508 |
| authorships[3].institutions[0].ror | https://ror.org/03emska84 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I1288039508 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | University of Niigata Prefecture |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chika Horikawa |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture, Niigata, Japan |
| authorships[4].author.id | https://openalex.org/A5026094017 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5777-4686 |
| authorships[4].author.display_name | MAYUKO H. YAMADA |
| authorships[4].countries | JP |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I71395657 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[4].institutions[0].id | https://openalex.org/I71395657 |
| authorships[4].institutions[0].ror | https://ror.org/04ww21r56 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I71395657 |
| authorships[4].institutions[0].country_code | JP |
| authorships[4].institutions[0].display_name | Niigata University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Mayuko Harada Yamada |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[5].author.id | https://openalex.org/A5002873951 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4287-6217 |
| authorships[5].author.display_name | Takaaki Sato |
| authorships[5].countries | JP |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I71395657 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[5].institutions[0].id | https://openalex.org/I71395657 |
| authorships[5].institutions[0].ror | https://ror.org/04ww21r56 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I71395657 |
| authorships[5].institutions[0].country_code | JP |
| authorships[5].institutions[0].display_name | Niigata University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Takaaki Sato |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[6].author.id | https://openalex.org/A5055537107 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9859-389X |
| authorships[6].author.display_name | Yuta Yaguchi |
| authorships[6].countries | JP |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I71395657 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[6].institutions[0].id | https://openalex.org/I71395657 |
| authorships[6].institutions[0].ror | https://ror.org/04ww21r56 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I71395657 |
| authorships[6].institutions[0].country_code | JP |
| authorships[6].institutions[0].display_name | Niigata University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Yuta Yaguchi |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[7].author.id | https://openalex.org/A5005728440 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-3168-7039 |
| authorships[7].author.display_name | Masahiko Yamamoto |
| authorships[7].countries | JP |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I71395657 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[7].institutions[0].id | https://openalex.org/I71395657 |
| authorships[7].institutions[0].ror | https://ror.org/04ww21r56 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I71395657 |
| authorships[7].institutions[0].country_code | JP |
| authorships[7].institutions[0].display_name | Niigata University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Masahiko Yamamoto |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[8].author.id | https://openalex.org/A5054799583 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-0919-2793 |
| authorships[8].author.display_name | Masaru Kitazawa |
| authorships[8].countries | JP |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I71395657 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[8].institutions[0].id | https://openalex.org/I71395657 |
| authorships[8].institutions[0].ror | https://ror.org/04ww21r56 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I71395657 |
| authorships[8].institutions[0].country_code | JP |
| authorships[8].institutions[0].display_name | Niigata University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Masaru Kitazawa |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[9].author.id | https://openalex.org/A5047981899 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-3932-2528 |
| authorships[9].author.display_name | Midori Iwanaga |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Midori Iwanaga |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5034811420 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-2143-1921 |
| authorships[10].author.display_name | Yasuhiro Matsubayashi |
| authorships[10].countries | JP |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I71395657 |
| authorships[10].affiliations[0].raw_affiliation_string | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[10].institutions[0].id | https://openalex.org/I71395657 |
| authorships[10].institutions[0].ror | https://ror.org/04ww21r56 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I71395657 |
| authorships[10].institutions[0].country_code | JP |
| authorships[10].institutions[0].display_name | Niigata University |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Yasuhiro Matsubayashi |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[11].author.id | https://openalex.org/A5037174575 |
| authorships[11].author.orcid | https://orcid.org/0000-0003-1263-2817 |
| authorships[11].author.display_name | Hirohito Sone |
| authorships[11].countries | JP |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I71395657 |
| authorships[11].affiliations[0].raw_affiliation_string | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[11].institutions[0].id | https://openalex.org/I71395657 |
| authorships[11].institutions[0].ror | https://ror.org/04ww21r56 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I71395657 |
| authorships[11].institutions[0].country_code | JP |
| authorships[11].institutions[0].display_name | Niigata University |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Hirohito Sone |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2196/preprints.22458 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Ability of Current Machine Learning Algorithms to Predict and Detect Hypoglycemia in Patients With Diabetes Mellitus: Meta-analysis (Preprint) |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10560 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2712 |
| primary_topic.subfield.display_name | Endocrinology, Diabetes and Metabolism |
| primary_topic.display_name | Diabetes Management and Research |
| related_works | https://openalex.org/W1557094818, https://openalex.org/W4385649027, https://openalex.org/W4213318607, https://openalex.org/W2084374993, https://openalex.org/W2373648995, https://openalex.org/W4361214851, https://openalex.org/W2183246718, https://openalex.org/W2099261052, https://openalex.org/W2743557138, https://openalex.org/W3209204065 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2196/preprints.22458 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.2196/preprints.22458 |
| primary_location.id | doi:10.2196/preprints.22458 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2196/preprints.22458 |
| publication_date | 2020-07-13 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2111021157, https://openalex.org/W1987951792, https://openalex.org/W2158137085, https://openalex.org/W2028294547, https://openalex.org/W2107638293, https://openalex.org/W2142062901, https://openalex.org/W2125435699, https://openalex.org/W1643140812, https://openalex.org/W2020488794, https://openalex.org/W2958860993, https://openalex.org/W2093661828, https://openalex.org/W2134508273, https://openalex.org/W2008438610, https://openalex.org/W2033461978, https://openalex.org/W2321780318, https://openalex.org/W2056076129, https://openalex.org/W2120555939, https://openalex.org/W2012845408, https://openalex.org/W2972724999, https://openalex.org/W2909057746, https://openalex.org/W2922157919, https://openalex.org/W2968714441, https://openalex.org/W2521108258, https://openalex.org/W2437812994, https://openalex.org/W2131587651, https://openalex.org/W2017294614, https://openalex.org/W2091390057, https://openalex.org/W1985788803, https://openalex.org/W2062984639, https://openalex.org/W1972946280, https://openalex.org/W2129023331, https://openalex.org/W1969497301, https://openalex.org/W2118323629, https://openalex.org/W2988860641, https://openalex.org/W1965523766, https://openalex.org/W2597545061, https://openalex.org/W4252993644, https://openalex.org/W2913262487 |
| referenced_works_count | 38 |
| abstract_inverted_index.2 | 113, 115 |
| abstract_inverted_index.A | 142 |
| abstract_inverted_index.a | 99, 132 |
| abstract_inverted_index.1, | 68 |
| abstract_inverted_index.19 | 153 |
| abstract_inverted_index.33 | 145 |
| abstract_inverted_index.96 | 82 |
| abstract_inverted_index.ML | 35, 93, 221, 282, 311, 321, 335 |
| abstract_inverted_index.as | 293, 303, 305 |
| abstract_inverted_index.be | 261, 266, 274, 285 |
| abstract_inverted_index.in | 95, 237, 250, 336 |
| abstract_inverted_index.is | 28, 315 |
| abstract_inverted_index.it | 272 |
| abstract_inverted_index.of | 18, 25, 34, 84, 112, 119, 144, 162, 168, 193, 280, 309, 333, 346 |
| abstract_inverted_index.or | 48, 103 |
| abstract_inverted_index.to | 10, 29, 37, 42, 53, 70, 90, 97, 101, 226, 233, 247, 256, 288, 317, 329 |
| abstract_inverted_index.× | 114 |
| abstract_inverted_index.(14 | 147 |
| abstract_inverted_index.14, | 72 |
| abstract_inverted_index.CI) | 167, 198 |
| abstract_inverted_index.For | 160, 191 |
| abstract_inverted_index.NLR | 264 |
| abstract_inverted_index.The | 23, 110 |
| abstract_inverted_index.and | 106, 126, 152, 175, 187, 212, 230, 263, 296, 328 |
| abstract_inverted_index.for | 15, 149, 155, 202, 206, 210, 215, 268, 294 |
| abstract_inverted_index.had | 89 |
| abstract_inverted_index.its | 46, 56, 108, 297 |
| abstract_inverted_index.set | 111 |
| abstract_inverted_index.the | 16, 31, 77, 92, 253, 277, 306, 310, 331 |
| abstract_inverted_index.was | 129 |
| abstract_inverted_index.(95% | 166, 197 |
| abstract_inverted_index.(ML) | 4 |
| abstract_inverted_index.(PLR | 259 |
| abstract_inverted_index.(eg, | 300 |
| abstract_inverted_index.(ie, | 40, 51, 117 |
| abstract_inverted_index.0.18 | 188 |
| abstract_inverted_index.0.22 | 213 |
| abstract_inverted_index.0.79 | 181 |
| abstract_inverted_index.0.80 | 183, 200 |
| abstract_inverted_index.0.92 | 204 |
| abstract_inverted_index.8.05 | 185 |
| abstract_inverted_index.NLR. | 216 |
| abstract_inverted_index.PLR, | 211 |
| abstract_inverted_index.been | 7 |
| abstract_inverted_index.data | 116 |
| abstract_inverted_index.have | 6, 58, 223 |
| abstract_inverted_index.more | 319 |
| abstract_inverted_index.risk | 290 |
| abstract_inverted_index.such | 292 |
| abstract_inverted_index.test | 107 |
| abstract_inverted_index.than | 323 |
| abstract_inverted_index.that | 80, 276, 325 |
| abstract_inverted_index.this | 26 |
| abstract_inverted_index.true | 120, 124 |
| abstract_inverted_index.well | 304 |
| abstract_inverted_index.were | 74, 158, 180, 199 |
| abstract_inverted_index.with | 45, 131, 239, 245, 252 |
| abstract_inverted_index.≥5 | 262 |
| abstract_inverted_index.(NLR) | 179 |
| abstract_inverted_index.(from | 66 |
| abstract_inverted_index.10.42 | 208 |
| abstract_inverted_index.1950, | 69 |
| abstract_inverted_index.2020) | 73 |
| abstract_inverted_index.<sec> | 0, 21, 61, 140, 218, 340 |
| abstract_inverted_index.Guide | 255 |
| abstract_inverted_index.alert | 41, 52 |
| abstract_inverted_index.build | 98 |
| abstract_inverted_index.drugs | 244 |
| abstract_inverted_index.exist | 327 |
| abstract_inverted_index.false | 122, 127 |
| abstract_inverted_index.model | 100 |
| abstract_inverted_index.order | 96 |
| abstract_inverted_index.ratio | 173, 178 |
| abstract_inverted_index.tests | 249 |
| abstract_inverted_index.these | 281 |
| abstract_inverted_index.those | 14, 324 |
| abstract_inverted_index.total | 143 |
| abstract_inverted_index.train | 91 |
| abstract_inverted_index.using | 76, 242 |
| abstract_inverted_index.(PLR), | 174 |
| abstract_inverted_index.</sec> | 20, 60, 139, 217, 339, 351 |
| abstract_inverted_index.Dialog | 78 |
| abstract_inverted_index.assess | 30 |
| abstract_inverted_index.before | 55 |
| abstract_inverted_index.covers | 81 |
| abstract_inverted_index.detect | 38, 102, 227 |
| abstract_inverted_index.model. | 138 |
| abstract_inverted_index.number | 118 |
| abstract_inverted_index.pooled | 130, 164, 195 |
| abstract_inverted_index.regard | 246 |
| abstract_inverted_index.should | 260, 265, 273, 284 |
| abstract_inverted_index.widely | 8 |
| abstract_inverted_index.≤0.2 | 267 |
| abstract_inverted_index.Current | 220 |
| abstract_inverted_index.January | 67 |
| abstract_inverted_index.Machine | 2 |
| abstract_inverted_index.Medical | 257 |
| abstract_inverted_index.Reviews | 348 |
| abstract_inverted_index.ability | 33, 225, 232, 308 |
| abstract_inverted_index.average | 307 |
| abstract_inverted_index.current | 32 |
| abstract_inverted_index.develop | 318 |
| abstract_inverted_index.enhance | 330 |
| abstract_inverted_index.ongoing | 228 |
| abstract_inverted_index.predict | 49, 104, 234 |
| abstract_inverted_index.studies | 88, 146, 148, 154 |
| abstract_inverted_index.summary | 134 |
| abstract_inverted_index.However, | 271 |
| abstract_inverted_index.Included | 87 |
| abstract_inverted_index.PROSPERO | 342 |
| abstract_inverted_index.Register | 345 |
| abstract_inverted_index.Users’ | 254 |
| abstract_inverted_index.accurate | 320 |
| abstract_inverted_index.applying | 334 |
| abstract_inverted_index.clinical | 278, 337 |
| abstract_inverted_index.diabetes | 11, 240 |
| abstract_inverted_index.impeding | 235 |
| abstract_inverted_index.learning | 3 |
| abstract_inverted_index.mellitus | 241 |
| abstract_inverted_index.moderate | 269 |
| abstract_inverted_index.negative | 176 |
| abstract_inverted_index.patients | 238 |
| abstract_inverted_index.platform | 79 |
| abstract_inverted_index.positive | 171 |
| abstract_inverted_index.profiles | 291 |
| abstract_inverted_index.receiver | 135 |
| abstract_inverted_index.required | 316 |
| abstract_inverted_index.research | 12, 314 |
| abstract_inverted_index.searches | 65 |
| abstract_inverted_index.symptoms | 57 |
| abstract_inverted_index.Continued | 313 |
| abstract_inverted_index.September | 71 |
| abstract_inverted_index.according | 287 |
| abstract_inverted_index.algorithm | 94 |
| abstract_inverted_index.conducted | 75 |
| abstract_inverted_index.currently | 326 |
| abstract_inverted_index.databases | 83 |
| abstract_inverted_index.detecting | 150 |
| abstract_inverted_index.detection | 161 |
| abstract_inverted_index.eligible. | 159 |
| abstract_inverted_index.estimates | 165, 196 |
| abstract_inverted_index.evaluated | 286 |
| abstract_inverted_index.including | 13 |
| abstract_inverted_index.objective | 24 |
| abstract_inverted_index.operating | 136 |
| abstract_inverted_index.settings. | 338 |
| abstract_inverted_index.symptoms) | 47 |
| abstract_inverted_index.Electronic | 63 |
| abstract_inverted_index.Literature | 258 |
| abstract_inverted_index.Systematic | 347 |
| abstract_inverted_index.accordance | 251 |
| abstract_inverted_index.algorithms | 5, 36, 222, 283, 322 |
| abstract_inverted_index.associated | 298 |
| abstract_inverted_index.coinciding | 44 |
| abstract_inverted_index.diagnostic | 248 |
| abstract_inverted_index.emphasized | 275 |
| abstract_inverted_index.introduced | 9 |
| abstract_inverted_index.likelihood | 172, 177 |
| abstract_inverted_index.literature | 64 |
| abstract_inverted_index.negatives) | 128 |
| abstract_inverted_index.negatives, | 125 |
| abstract_inverted_index.occurred). | 59 |
| abstract_inverted_index.positives, | 121, 123 |
| abstract_inverted_index.predicting | 156 |
| abstract_inverted_index.prediction | 192 |
| abstract_inverted_index.(0.15-0.31) | 214 |
| abstract_inverted_index.(0.72-0.86) | 201 |
| abstract_inverted_index.(0.87-0.96) | 205 |
| abstract_inverted_index.Prospective | 344 |
| abstract_inverted_index.algorithms. | 312 |
| abstract_inverted_index.arrhythmia, | 301 |
| abstract_inverted_index.considerate | 231 |
| abstract_inverted_index.feasibility | 332 |
| abstract_inverted_index.literature. | 86 |
| abstract_inverted_index.patients’ | 289 |
| abstract_inverted_index.(0.12-0.27), | 189 |
| abstract_inverted_index.(0.64-0.91), | 184 |
| abstract_inverted_index.(0.75-0.83), | 182 |
| abstract_inverted_index.(5.82-18.65) | 209 |
| abstract_inverted_index.hierarchical | 133 |
| abstract_inverted_index.hypoglycemia | 39, 43, 50, 54, 105, 151, 229, 236, 295 |
| abstract_inverted_index.hypoglycemic | 243 |
| abstract_inverted_index.insufficient | 224 |
| abstract_inverted_index.performance. | 109 |
| abstract_inverted_index.sensitivity, | 169, 203 |
| abstract_inverted_index.specificity, | 170, 207 |
| abstract_inverted_index.(4.79-13.51), | 186 |
| abstract_inverted_index.International | 343 |
| abstract_inverted_index.applicability | 279 |
| abstract_inverted_index.complications | 299 |
| abstract_inverted_index.hypoglycemia) | 157 |
| abstract_inverted_index.hypoglycemia, | 163, 194 |
| abstract_inverted_index.hypoglycemia. | 19 |
| abstract_inverted_index.meta-analysis | 27 |
| abstract_inverted_index.peer-reviewed | 85 |
| abstract_inverted_index.reliability). | 270 |
| abstract_inverted_index.respectively. | 190 |
| abstract_inverted_index.characteristic | 137 |
| abstract_inverted_index.identification | 17 |
| abstract_inverted_index.CRD42020163682; | 349 |
| abstract_inverted_index.neuroglycopenia) | 302 |
| abstract_inverted_index.<title>METHODS</title> | 62 |
| abstract_inverted_index.<title>RESULTS</title> | 141 |
| abstract_inverted_index.<title>OBJECTIVE</title> | 22 |
| abstract_inverted_index.<title>BACKGROUND</title> | 1 |
| abstract_inverted_index.<title>CONCLUSIONS</title> | 219 |
| abstract_inverted_index.<title>CLINICALTRIAL</title> | 341 |
| abstract_inverted_index.http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42020163682 | 350 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5067858714 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 12 |
| corresponding_institution_ids | https://openalex.org/I71395657 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.6200000047683716 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.34557833 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |