Abnormal behavior detection using intelligent video surveillance Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.47679/ijasca.v3i1.100
Intelligent surveillance systems have a large number of cameras installed. Abnormal vehicle or human entry at a certain location or time may potentially result in monetary loss and/or fatalities. This study develops a multi-surveillance camera intelligent surveillance system that is new, adaptable, and fast. The user may choose the number of interest zones with any polygon shape for each camera. Furthermore, the sort of abnormal item and the direction of abnormal motion for each location separately. To identify items in a video frame, the Single Shot Multi-Box Detector (SSD_MobileNet_v3) deep neural network is utilized. After that, these items are tracked using a Kernelized Correlation Filters (KCF) tracker in order to identify the direction of aberrant motion. Also, a novelty is to determine the people's motion type, i.e., running or walking, by establishing a relationship between the real human dimension and the observed distances in the video. The system's performance is evaluated on both the Authentically Distorted Surveillance Videos dataset and the newly collected dataset. An accuracy of 88.22% has been scored for event detection and F1-score of 87%. for people's motion classification. The experimental results confirm the superiority of the suggested method over the current state-of-the-art methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.47679/ijasca.v3i1.100
- https://mail.ijasca.org/index.php/ijasca/article/download/100/45
- OA Status
- diamond
- Cited By
- 1
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409843288
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409843288Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.47679/ijasca.v3i1.100Digital Object Identifier
- Title
-
Abnormal behavior detection using intelligent video surveillanceWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-20Full publication date if available
- Authors
-
Muhammad Shaban, Marwa Elpeltagy, Ahmed M. Khedr, A. Al-MarakbeyList of authors in order
- Landing page
-
https://doi.org/10.47679/ijasca.v3i1.100Publisher landing page
- PDF URL
-
https://mail.ijasca.org/index.php/ijasca/article/download/100/45Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://mail.ijasca.org/index.php/ijasca/article/download/100/45Direct OA link when available
- Concepts
-
Computer science, Computer securityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409843288 |
|---|---|
| doi | https://doi.org/10.47679/ijasca.v3i1.100 |
| ids.doi | https://doi.org/10.47679/ijasca.v3i1.100 |
| ids.openalex | https://openalex.org/W4409843288 |
| fwci | 0.63877855 |
| type | article |
| title | Abnormal behavior detection using intelligent video surveillance |
| biblio.issue | 1 |
| biblio.volume | 3 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.7017999887466431 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5365367531776428 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C38652104 |
| concepts[1].level | 1 |
| concepts[1].score | 0.37196725606918335 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[1].display_name | Computer security |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5365367531776428 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/computer-security |
| keywords[1].score | 0.37196725606918335 |
| keywords[1].display_name | Computer security |
| language | en |
| locations[0].id | doi:10.47679/ijasca.v3i1.100 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4386622118 |
| locations[0].source.issn | 2809-7467, 2809-7599 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2809-7467 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Advanced Science and Computer Applications |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://mail.ijasca.org/index.php/ijasca/article/download/100/45 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Advanced Science and Computer Applications |
| locations[0].landing_page_url | https://doi.org/10.47679/ijasca.v3i1.100 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101891010 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0736-9455 |
| authorships[0].author.display_name | Muhammad Shaban |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | M. Shaban |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5117335577 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Marwa Elpeltagy |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Marwa Elpeltagy |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5051533062 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7957-7862 |
| authorships[2].author.display_name | Ahmed M. Khedr |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ahmed Y Khedr |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5117335578 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | A. Al-Marakbey |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | A. Al-Marakbey |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://mail.ijasca.org/index.php/ijasca/article/download/100/45 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Abnormal behavior detection using intelligent video surveillance |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.7017999887466431 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.47679/ijasca.v3i1.100 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4386622118 |
| best_oa_location.source.issn | 2809-7467, 2809-7599 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2809-7467 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Advanced Science and Computer Applications |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://mail.ijasca.org/index.php/ijasca/article/download/100/45 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Advanced Science and Computer Applications |
| best_oa_location.landing_page_url | https://doi.org/10.47679/ijasca.v3i1.100 |
| primary_location.id | doi:10.47679/ijasca.v3i1.100 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4386622118 |
| primary_location.source.issn | 2809-7467, 2809-7599 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2809-7467 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Advanced Science and Computer Applications |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://mail.ijasca.org/index.php/ijasca/article/download/100/45 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Advanced Science and Computer Applications |
| primary_location.landing_page_url | https://doi.org/10.47679/ijasca.v3i1.100 |
| publication_date | 2024-11-20 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3207807107, https://openalex.org/W2783273064, https://openalex.org/W3127491344, https://openalex.org/W3108498354, https://openalex.org/W3018661145, https://openalex.org/W3085932345, https://openalex.org/W2968551691, https://openalex.org/W3214745864, https://openalex.org/W2753526808, https://openalex.org/W2341058432, https://openalex.org/W3128446401, https://openalex.org/W2910453756, https://openalex.org/W2587765117, https://openalex.org/W2296729004, https://openalex.org/W3096245447, https://openalex.org/W2964232409, https://openalex.org/W3011179489, https://openalex.org/W2973962176, https://openalex.org/W4293089583, https://openalex.org/W4386119005, https://openalex.org/W4390165684, https://openalex.org/W3151922143, https://openalex.org/W3106250896, https://openalex.org/W639708223, https://openalex.org/W2169036624 |
| referenced_works_count | 25 |
| abstract_inverted_index.a | 4, 16, 32, 80, 101, 117, 132 |
| abstract_inverted_index.An | 164 |
| abstract_inverted_index.To | 76 |
| abstract_inverted_index.at | 15 |
| abstract_inverted_index.by | 130 |
| abstract_inverted_index.in | 24, 79, 107, 143 |
| abstract_inverted_index.is | 39, 92, 119, 149 |
| abstract_inverted_index.of | 7, 50, 63, 69, 113, 166, 176, 188 |
| abstract_inverted_index.on | 151 |
| abstract_inverted_index.or | 12, 19, 128 |
| abstract_inverted_index.to | 109, 120 |
| abstract_inverted_index.The | 44, 146, 182 |
| abstract_inverted_index.and | 42, 66, 139, 159, 174 |
| abstract_inverted_index.any | 54 |
| abstract_inverted_index.are | 98 |
| abstract_inverted_index.for | 57, 72, 171, 178 |
| abstract_inverted_index.has | 168 |
| abstract_inverted_index.may | 21, 46 |
| abstract_inverted_index.the | 48, 61, 67, 83, 111, 122, 135, 140, 144, 153, 160, 186, 189, 193 |
| abstract_inverted_index.87%. | 177 |
| abstract_inverted_index.Shot | 85 |
| abstract_inverted_index.This | 29 |
| abstract_inverted_index.been | 169 |
| abstract_inverted_index.both | 152 |
| abstract_inverted_index.deep | 89 |
| abstract_inverted_index.each | 58, 73 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.item | 65 |
| abstract_inverted_index.loss | 26 |
| abstract_inverted_index.new, | 40 |
| abstract_inverted_index.over | 192 |
| abstract_inverted_index.real | 136 |
| abstract_inverted_index.sort | 62 |
| abstract_inverted_index.that | 38 |
| abstract_inverted_index.time | 20 |
| abstract_inverted_index.user | 45 |
| abstract_inverted_index.with | 53 |
| abstract_inverted_index.(KCF) | 105 |
| abstract_inverted_index.After | 94 |
| abstract_inverted_index.Also, | 116 |
| abstract_inverted_index.entry | 14 |
| abstract_inverted_index.event | 172 |
| abstract_inverted_index.fast. | 43 |
| abstract_inverted_index.human | 13, 137 |
| abstract_inverted_index.i.e., | 126 |
| abstract_inverted_index.items | 78, 97 |
| abstract_inverted_index.large | 5 |
| abstract_inverted_index.newly | 161 |
| abstract_inverted_index.order | 108 |
| abstract_inverted_index.shape | 56 |
| abstract_inverted_index.study | 30 |
| abstract_inverted_index.that, | 95 |
| abstract_inverted_index.these | 96 |
| abstract_inverted_index.type, | 125 |
| abstract_inverted_index.using | 100 |
| abstract_inverted_index.video | 81 |
| abstract_inverted_index.zones | 52 |
| abstract_inverted_index.88.22% | 167 |
| abstract_inverted_index.Single | 84 |
| abstract_inverted_index.Videos | 157 |
| abstract_inverted_index.and/or | 27 |
| abstract_inverted_index.camera | 34 |
| abstract_inverted_index.choose | 47 |
| abstract_inverted_index.frame, | 82 |
| abstract_inverted_index.method | 191 |
| abstract_inverted_index.motion | 71, 124, 180 |
| abstract_inverted_index.neural | 90 |
| abstract_inverted_index.number | 6, 49 |
| abstract_inverted_index.result | 23 |
| abstract_inverted_index.scored | 170 |
| abstract_inverted_index.system | 37 |
| abstract_inverted_index.video. | 145 |
| abstract_inverted_index.Filters | 104 |
| abstract_inverted_index.between | 134 |
| abstract_inverted_index.camera. | 59 |
| abstract_inverted_index.cameras | 8 |
| abstract_inverted_index.certain | 17 |
| abstract_inverted_index.confirm | 185 |
| abstract_inverted_index.current | 194 |
| abstract_inverted_index.dataset | 158 |
| abstract_inverted_index.motion. | 115 |
| abstract_inverted_index.network | 91 |
| abstract_inverted_index.novelty | 118 |
| abstract_inverted_index.polygon | 55 |
| abstract_inverted_index.results | 184 |
| abstract_inverted_index.running | 127 |
| abstract_inverted_index.systems | 2 |
| abstract_inverted_index.tracked | 99 |
| abstract_inverted_index.tracker | 106 |
| abstract_inverted_index.vehicle | 11 |
| abstract_inverted_index.Abnormal | 10 |
| abstract_inverted_index.Detector | 87 |
| abstract_inverted_index.F1-score | 175 |
| abstract_inverted_index.aberrant | 114 |
| abstract_inverted_index.abnormal | 64, 70 |
| abstract_inverted_index.accuracy | 165 |
| abstract_inverted_index.dataset. | 163 |
| abstract_inverted_index.develops | 31 |
| abstract_inverted_index.identify | 77, 110 |
| abstract_inverted_index.interest | 51 |
| abstract_inverted_index.location | 18, 74 |
| abstract_inverted_index.methods. | 196 |
| abstract_inverted_index.monetary | 25 |
| abstract_inverted_index.observed | 141 |
| abstract_inverted_index.people's | 123, 179 |
| abstract_inverted_index.system's | 147 |
| abstract_inverted_index.walking, | 129 |
| abstract_inverted_index.Distorted | 155 |
| abstract_inverted_index.Multi-Box | 86 |
| abstract_inverted_index.collected | 162 |
| abstract_inverted_index.detection | 173 |
| abstract_inverted_index.determine | 121 |
| abstract_inverted_index.dimension | 138 |
| abstract_inverted_index.direction | 68, 112 |
| abstract_inverted_index.distances | 142 |
| abstract_inverted_index.evaluated | 150 |
| abstract_inverted_index.suggested | 190 |
| abstract_inverted_index.utilized. | 93 |
| abstract_inverted_index.Kernelized | 102 |
| abstract_inverted_index.adaptable, | 41 |
| abstract_inverted_index.installed. | 9 |
| abstract_inverted_index.Correlation | 103 |
| abstract_inverted_index.Intelligent | 0 |
| abstract_inverted_index.fatalities. | 28 |
| abstract_inverted_index.intelligent | 35 |
| abstract_inverted_index.performance | 148 |
| abstract_inverted_index.potentially | 22 |
| abstract_inverted_index.separately. | 75 |
| abstract_inverted_index.superiority | 187 |
| abstract_inverted_index.Furthermore, | 60 |
| abstract_inverted_index.Surveillance | 156 |
| abstract_inverted_index.establishing | 131 |
| abstract_inverted_index.experimental | 183 |
| abstract_inverted_index.relationship | 133 |
| abstract_inverted_index.surveillance | 1, 36 |
| abstract_inverted_index.Authentically | 154 |
| abstract_inverted_index.classification. | 181 |
| abstract_inverted_index.state-of-the-art | 195 |
| abstract_inverted_index.(SSD_MobileNet_v3) | 88 |
| abstract_inverted_index.multi-surveillance | 33 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.75616461 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |