Abnormal Vibration Identification of Metro Tunnels on the Basis of the Spatial Correlation of Dynamic Strain from Dense Measurement Points of Distributed Sensing Optical Fibers Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/s25206266
The failure to accurately identify abnormal vibrations in protected metro areas is a serious threat to the operational safety of metro tunnels and trains, and there is currently no suitable method for effectively improving the accuracy of abnormal vibration identification. To address this issue, an accurate method for identifying abnormal vibrations in a metro reserve based on spatially correlated dense measurement points is proposed. First, by arranging distributed optical fibers along the longitudinal length of a tunnel, dynamic strain vibration signals are extracted via phase-sensitive optical time-domain reflectometry analysis, and analysis of variance (ANOVA) and Pearson correlation analysis are used to jointly downscale the dynamic strain features. On this basis, a spatial correlation between the calculated values of the features of the target measurement points to be updated and its adjacent measurement points is constructed, and the spatial correlation credibility of the dynamic strain features between the dense measurement points and the target measurement points to be updated is calculated via quadratic function weighting and kernel density estimation methods. The weights are calculated, and the eigenvalues of the target measurement points are updated on the basis of the correlation credibility weights between the adjacent measurement points. Finally, a support vector machine (SVM) and back propagation (BP) identification model for the eigenvalues of the target measurement points are constructed to identify the dynamic strain eigenvalues of the abnormal vibrations in the underground tunnel. Numerical simulations and an experiment in an actual tunnel verify the effectiveness of the proposed method.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s25206266
- OA Status
- gold
- References
- 39
- OpenAlex ID
- https://openalex.org/W4415047150
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415047150Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s25206266Digital Object Identifier
- Title
-
Abnormal Vibration Identification of Metro Tunnels on the Basis of the Spatial Correlation of Dynamic Strain from Dense Measurement Points of Distributed Sensing Optical FibersWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-10Full publication date if available
- Authors
-
Ho Jae Han, Xiaopei Cai, Liang GaoList of authors in order
- Landing page
-
https://doi.org/10.3390/s25206266Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/s25206266Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
39Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415047150 |
|---|---|
| doi | https://doi.org/10.3390/s25206266 |
| ids.doi | https://doi.org/10.3390/s25206266 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41157319 |
| ids.openalex | https://openalex.org/W4415047150 |
| fwci | 0.0 |
| type | article |
| title | Abnormal Vibration Identification of Metro Tunnels on the Basis of the Spatial Correlation of Dynamic Strain from Dense Measurement Points of Distributed Sensing Optical Fibers |
| biblio.issue | 20 |
| biblio.volume | 25 |
| biblio.last_page | 6266 |
| biblio.first_page | 6266 |
| topics[0].id | https://openalex.org/T10205 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Advanced Fiber Optic Sensors |
| topics[1].id | https://openalex.org/T12153 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9911999702453613 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3105 |
| topics[1].subfield.display_name | Instrumentation |
| topics[1].display_name | Advanced Optical Sensing Technologies |
| topics[2].id | https://openalex.org/T14257 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9901999831199646 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Advanced Measurement and Detection Methods |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| language | en |
| locations[0].id | doi:10.3390/s25206266 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s25206266 |
| locations[1].id | pmid:41157319 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41157319 |
| locations[2].id | pmh:oai:doaj.org/article:5e2b994f7f6640e49e3f8689e97e1cc0 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 25, Iss 20, p 6266 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/5e2b994f7f6640e49e3f8689e97e1cc0 |
| locations[3].id | pmh:oai:europepmc.org:11377616 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12567613 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100779305 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0657-1766 |
| authorships[0].author.display_name | Ho Jae Han |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210099312 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Rail Transportation, Shandong Jiaotong University, Jinan 250300, China |
| authorships[0].institutions[0].id | https://openalex.org/I21193070 |
| authorships[0].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Jiaotong University |
| authorships[0].institutions[1].id | https://openalex.org/I4210099312 |
| authorships[0].institutions[1].ror | https://ror.org/01848hk04 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210099312 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Shandong Jiaotong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hong Han |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Rail Transportation, Shandong Jiaotong University, Jinan 250300, China, School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China |
| authorships[1].author.id | https://openalex.org/A5035941423 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4592-4525 |
| authorships[1].author.display_name | Xiaopei Cai |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China |
| authorships[1].institutions[0].id | https://openalex.org/I21193070 |
| authorships[1].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing Jiaotong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiaopei Cai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China |
| authorships[2].author.id | https://openalex.org/A5100749446 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5447-053X |
| authorships[2].author.display_name | Liang Gao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China |
| authorships[2].institutions[0].id | https://openalex.org/I21193070 |
| authorships[2].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beijing Jiaotong University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Liang Gao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/s25206266 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-11T00:00:00 |
| display_name | Abnormal Vibration Identification of Metro Tunnels on the Basis of the Spatial Correlation of Dynamic Strain from Dense Measurement Points of Distributed Sensing Optical Fibers |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10205 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Advanced Fiber Optic Sensors |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/s25206266 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s25206266 |
| primary_location.id | doi:10.3390/s25206266 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s25206266 |
| publication_date | 2025-10-10 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2964041315, https://openalex.org/W2316473264, https://openalex.org/W2407746226, https://openalex.org/W2799294747, https://openalex.org/W2794732983, https://openalex.org/W2395267241, https://openalex.org/W2058003462, https://openalex.org/W1790278806, https://openalex.org/W2895786783, https://openalex.org/W2900927640, https://openalex.org/W4327782034, https://openalex.org/W2778787316, https://openalex.org/W4391343442, https://openalex.org/W4311119949, https://openalex.org/W4205759630, https://openalex.org/W3213610464, https://openalex.org/W2781501968, https://openalex.org/W4321254222, https://openalex.org/W4206034404, https://openalex.org/W4297497027, https://openalex.org/W4393113898, https://openalex.org/W2904902509, https://openalex.org/W4389104895, https://openalex.org/W3106763294, https://openalex.org/W2968296999, https://openalex.org/W2798965597, https://openalex.org/W3117804044, https://openalex.org/W3035461736, https://openalex.org/W2555618208, https://openalex.org/W2964062501, https://openalex.org/W2256362396, https://openalex.org/W4399641927, https://openalex.org/W2236141116, https://openalex.org/W3203605797, https://openalex.org/W3138047002, https://openalex.org/W4308507321, https://openalex.org/W639708223, https://openalex.org/W3015777882, https://openalex.org/W2793128764 |
| referenced_works_count | 39 |
| abstract_inverted_index.a | 12, 52, 75, 110, 197 |
| abstract_inverted_index.On | 107 |
| abstract_inverted_index.To | 40 |
| abstract_inverted_index.an | 44, 235, 238 |
| abstract_inverted_index.be | 126, 156 |
| abstract_inverted_index.by | 65 |
| abstract_inverted_index.in | 7, 51, 228, 237 |
| abstract_inverted_index.is | 11, 26, 62, 133, 158 |
| abstract_inverted_index.no | 28 |
| abstract_inverted_index.of | 19, 36, 74, 91, 117, 120, 140, 176, 186, 211, 224, 244 |
| abstract_inverted_index.on | 56, 183 |
| abstract_inverted_index.to | 2, 15, 100, 125, 155, 218 |
| abstract_inverted_index.The | 0, 169 |
| abstract_inverted_index.and | 22, 24, 89, 94, 128, 135, 150, 164, 173, 202, 234 |
| abstract_inverted_index.are | 81, 98, 171, 181, 216 |
| abstract_inverted_index.for | 31, 47, 208 |
| abstract_inverted_index.its | 129 |
| abstract_inverted_index.the | 16, 34, 71, 103, 114, 118, 121, 136, 141, 146, 151, 174, 177, 184, 187, 192, 209, 212, 220, 225, 229, 242, 245 |
| abstract_inverted_index.via | 83, 160 |
| abstract_inverted_index.(BP) | 205 |
| abstract_inverted_index.back | 203 |
| abstract_inverted_index.this | 42, 108 |
| abstract_inverted_index.used | 99 |
| abstract_inverted_index.(SVM) | 201 |
| abstract_inverted_index.along | 70 |
| abstract_inverted_index.areas | 10 |
| abstract_inverted_index.based | 55 |
| abstract_inverted_index.basis | 185 |
| abstract_inverted_index.dense | 59, 147 |
| abstract_inverted_index.metro | 9, 20, 53 |
| abstract_inverted_index.model | 207 |
| abstract_inverted_index.there | 25 |
| abstract_inverted_index.First, | 64 |
| abstract_inverted_index.actual | 239 |
| abstract_inverted_index.basis, | 109 |
| abstract_inverted_index.fibers | 69 |
| abstract_inverted_index.issue, | 43 |
| abstract_inverted_index.kernel | 165 |
| abstract_inverted_index.length | 73 |
| abstract_inverted_index.method | 30, 46 |
| abstract_inverted_index.points | 61, 124, 132, 149, 154, 180, 215 |
| abstract_inverted_index.safety | 18 |
| abstract_inverted_index.strain | 78, 105, 143, 222 |
| abstract_inverted_index.target | 122, 152, 178, 213 |
| abstract_inverted_index.threat | 14 |
| abstract_inverted_index.tunnel | 240 |
| abstract_inverted_index.values | 116 |
| abstract_inverted_index.vector | 199 |
| abstract_inverted_index.verify | 241 |
| abstract_inverted_index.(ANOVA) | 93 |
| abstract_inverted_index.Pearson | 95 |
| abstract_inverted_index.address | 41 |
| abstract_inverted_index.between | 113, 145, 191 |
| abstract_inverted_index.density | 166 |
| abstract_inverted_index.dynamic | 77, 104, 142, 221 |
| abstract_inverted_index.failure | 1 |
| abstract_inverted_index.jointly | 101 |
| abstract_inverted_index.machine | 200 |
| abstract_inverted_index.method. | 247 |
| abstract_inverted_index.optical | 68, 85 |
| abstract_inverted_index.points. | 195 |
| abstract_inverted_index.reserve | 54 |
| abstract_inverted_index.serious | 13 |
| abstract_inverted_index.signals | 80 |
| abstract_inverted_index.spatial | 111, 137 |
| abstract_inverted_index.support | 198 |
| abstract_inverted_index.trains, | 23 |
| abstract_inverted_index.tunnel, | 76 |
| abstract_inverted_index.tunnel. | 231 |
| abstract_inverted_index.tunnels | 21 |
| abstract_inverted_index.updated | 127, 157, 182 |
| abstract_inverted_index.weights | 170, 190 |
| abstract_inverted_index.Finally, | 196 |
| abstract_inverted_index.abnormal | 5, 37, 49, 226 |
| abstract_inverted_index.accuracy | 35 |
| abstract_inverted_index.accurate | 45 |
| abstract_inverted_index.adjacent | 130, 193 |
| abstract_inverted_index.analysis | 90, 97 |
| abstract_inverted_index.features | 119, 144 |
| abstract_inverted_index.function | 162 |
| abstract_inverted_index.identify | 4, 219 |
| abstract_inverted_index.methods. | 168 |
| abstract_inverted_index.proposed | 246 |
| abstract_inverted_index.suitable | 29 |
| abstract_inverted_index.variance | 92 |
| abstract_inverted_index.Numerical | 232 |
| abstract_inverted_index.analysis, | 88 |
| abstract_inverted_index.arranging | 66 |
| abstract_inverted_index.currently | 27 |
| abstract_inverted_index.downscale | 102 |
| abstract_inverted_index.extracted | 82 |
| abstract_inverted_index.features. | 106 |
| abstract_inverted_index.improving | 33 |
| abstract_inverted_index.proposed. | 63 |
| abstract_inverted_index.protected | 8 |
| abstract_inverted_index.quadratic | 161 |
| abstract_inverted_index.spatially | 57 |
| abstract_inverted_index.vibration | 38, 79 |
| abstract_inverted_index.weighting | 163 |
| abstract_inverted_index.accurately | 3 |
| abstract_inverted_index.calculated | 115, 159 |
| abstract_inverted_index.correlated | 58 |
| abstract_inverted_index.estimation | 167 |
| abstract_inverted_index.experiment | 236 |
| abstract_inverted_index.vibrations | 6, 50, 227 |
| abstract_inverted_index.calculated, | 172 |
| abstract_inverted_index.constructed | 217 |
| abstract_inverted_index.correlation | 96, 112, 138, 188 |
| abstract_inverted_index.credibility | 139, 189 |
| abstract_inverted_index.distributed | 67 |
| abstract_inverted_index.effectively | 32 |
| abstract_inverted_index.eigenvalues | 175, 210, 223 |
| abstract_inverted_index.identifying | 48 |
| abstract_inverted_index.measurement | 60, 123, 131, 148, 153, 179, 194, 214 |
| abstract_inverted_index.operational | 17 |
| abstract_inverted_index.propagation | 204 |
| abstract_inverted_index.simulations | 233 |
| abstract_inverted_index.time-domain | 86 |
| abstract_inverted_index.underground | 230 |
| abstract_inverted_index.constructed, | 134 |
| abstract_inverted_index.longitudinal | 72 |
| abstract_inverted_index.effectiveness | 243 |
| abstract_inverted_index.reflectometry | 87 |
| abstract_inverted_index.identification | 206 |
| abstract_inverted_index.identification. | 39 |
| abstract_inverted_index.phase-sensitive | 84 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5100779305 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I21193070, https://openalex.org/I4210099312 |
| citation_normalized_percentile.value | 0.540013 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |