Abstract 1422 Merits of deep and fast proteomics for bacterial proteome profiling Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.jbc.2024.106631
Bottom-up proteomics in synergy with big data science has significantly advanced microbiological research. Comprehensive proteome profiling is pivotal in advancing our knowledge of bacteria and their interactions with the environment, other organisms, and human health. Although many proteomic methods exist (sample preparation, mass-spectrometric data acquisition, and data analysis), most have only been validated on eukaryotic samples. However, bacteria possess very distinctive characteristics. For example, rigid cell walls and pathogenicity factors affect the choice of suitable cell lysis strategies. In addition to these challenges, bacteria offer certain advantages over eukaryotes: A smaller dynamic range of protein expression and a smaller genome enables faster liquid-chromatography coupled to tandem mass-spectrometry methods at constant proteomic depth. To exploit the full potential of proteomics on bacterial samples, we evaluated established protocols concerning i) the inactivation efficiency of a diverse set of bacteria, ii) suitability for high-throughput sample preparation at minimized costs, iii) the number of peptide and protein identifications, and iv) reliable quantification. We worked with six representative species to evaluate the general applicability of the workflows. The optimal sample preparation protocol combines cell lysis with 100% TFA, in-solution protein digestion, and chaotropic dilution with solid-phase extraction. Data acquisition was performed over a 30-minute linear gradient with increasing acetonitrile concentrations on an Orbitrap Exploris 480 operated in DIA mode. Data analysis was performed with DIA-NN to achieve maximal peptide and protein identifications. With this setup, we detected, on average, 40% of all open reading frames as validated for the six representative species and another 18 highly diverse bacterial species. The proposed workflow is easy to perform, robust, reproducible, and tailored to large-scale microbiological projects. We present the merits of the proposed workflow on four examples: First, comparative proteome analyses of Escherichia coli and Bacillus cereus highlight metabolic adaptions to changes in cultivation conditions. Second, the characterization of baseline proteomes of 305 bacterial species provides experimental evidence for over 500,000 genes. Additionally, this comprehensive dataset is a valuable resource for the microbiological community and will be hosted on ProteomicsDB (https://www.proteomicsdb.org/). Third, we describe non-canonical proteins in the model organism Pseudomonas aeruginosa, e.g., proteins encoded by overlapping embedded genes. Last, our workflow also supports the generation of label-free absolute quantitative data, which were used for mathematical models that explain enzyme expression kinetics during the transition from rich to minimal medium in Escherichia coli. These illustrative examples demonstrate the potential of proteomics as a versatile tool for a wide range of applications in prokaryotic research. This research was supported by EPIC-XS funded by the Horizon 2020 program of the European Union (project number 823839). T.H. received funding from NSF Grant MCB 1818384 and NIH Grant R01GM109069. A.S. was supported by Elitenetzwerk Bayern (grant number F-6-M5613.6.K-NW-2021-411/1/1).
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.jbc.2024.106631
- http://www.jbc.org/article/S0021925824011049/pdf
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393167623
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393167623Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.jbc.2024.106631Digital Object Identifier
- Title
-
Abstract 1422 Merits of deep and fast proteomics for bacterial proteome profilingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-01Full publication date if available
- Authors
-
Miriam Abele, Armin Soleymaniniya, Etienne V. Doll, Michaela Kreitmeier, Matteo Mori, Klaus Neuhaus, Terence Hwa, B. Kuester, Christina LudwigList of authors in order
- Landing page
-
https://doi.org/10.1016/j.jbc.2024.106631Publisher landing page
- PDF URL
-
https://www.jbc.org/article/S0021925824011049/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.jbc.org/article/S0021925824011049/pdfDirect OA link when available
- Concepts
-
Proteome, Profiling (computer programming), Computational biology, Proteomics, Biology, Bioinformatics, Computer science, Genetics, Gene, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393167623 |
|---|---|
| doi | https://doi.org/10.1016/j.jbc.2024.106631 |
| ids.doi | https://doi.org/10.1016/j.jbc.2024.106631 |
| ids.openalex | https://openalex.org/W4393167623 |
| fwci | 0.0 |
| type | article |
| title | Abstract 1422 Merits of deep and fast proteomics for bacterial proteome profiling |
| biblio.issue | 3 |
| biblio.volume | 300 |
| biblio.last_page | 106631 |
| biblio.first_page | 106631 |
| topics[0].id | https://openalex.org/T10519 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 0.9316999912261963 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1607 |
| topics[0].subfield.display_name | Spectroscopy |
| topics[0].display_name | Advanced Proteomics Techniques and Applications |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | USD |
| apc_list.value_usd | 2500 |
| apc_paid.value | 2500 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2500 |
| concepts[0].id | https://openalex.org/C104397665 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6953778266906738 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q860947 |
| concepts[0].display_name | Proteome |
| concepts[1].id | https://openalex.org/C187191949 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6839829087257385 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1138496 |
| concepts[1].display_name | Profiling (computer programming) |
| concepts[2].id | https://openalex.org/C70721500 |
| concepts[2].level | 1 |
| concepts[2].score | 0.641907811164856 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[2].display_name | Computational biology |
| concepts[3].id | https://openalex.org/C46111723 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6278170347213745 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q471857 |
| concepts[3].display_name | Proteomics |
| concepts[4].id | https://openalex.org/C86803240 |
| concepts[4].level | 0 |
| concepts[4].score | 0.41966187953948975 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[4].display_name | Biology |
| concepts[5].id | https://openalex.org/C60644358 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3216000199317932 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q128570 |
| concepts[5].display_name | Bioinformatics |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.25068557262420654 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C54355233 |
| concepts[7].level | 1 |
| concepts[7].score | 0.18594849109649658 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[7].display_name | Genetics |
| concepts[8].id | https://openalex.org/C104317684 |
| concepts[8].level | 2 |
| concepts[8].score | 0.09117704629898071 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[8].display_name | Gene |
| concepts[9].id | https://openalex.org/C111919701 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[9].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/proteome |
| keywords[0].score | 0.6953778266906738 |
| keywords[0].display_name | Proteome |
| keywords[1].id | https://openalex.org/keywords/profiling |
| keywords[1].score | 0.6839829087257385 |
| keywords[1].display_name | Profiling (computer programming) |
| keywords[2].id | https://openalex.org/keywords/computational-biology |
| keywords[2].score | 0.641907811164856 |
| keywords[2].display_name | Computational biology |
| keywords[3].id | https://openalex.org/keywords/proteomics |
| keywords[3].score | 0.6278170347213745 |
| keywords[3].display_name | Proteomics |
| keywords[4].id | https://openalex.org/keywords/biology |
| keywords[4].score | 0.41966187953948975 |
| keywords[4].display_name | Biology |
| keywords[5].id | https://openalex.org/keywords/bioinformatics |
| keywords[5].score | 0.3216000199317932 |
| keywords[5].display_name | Bioinformatics |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.25068557262420654 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/genetics |
| keywords[7].score | 0.18594849109649658 |
| keywords[7].display_name | Genetics |
| keywords[8].id | https://openalex.org/keywords/gene |
| keywords[8].score | 0.09117704629898071 |
| keywords[8].display_name | Gene |
| language | en |
| locations[0].id | doi:10.1016/j.jbc.2024.106631 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S140251998 |
| locations[0].source.issn | 0021-9258, 1067-8816, 1083-351X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0021-9258 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Biological Chemistry |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].license | cc-by |
| locations[0].pdf_url | http://www.jbc.org/article/S0021925824011049/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Biological Chemistry |
| locations[0].landing_page_url | https://doi.org/10.1016/j.jbc.2024.106631 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5015767793 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0084-2999 |
| authorships[0].author.display_name | Miriam Abele |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I62916508 |
| authorships[0].affiliations[0].raw_affiliation_string | Technical University of Munich |
| authorships[0].institutions[0].id | https://openalex.org/I62916508 |
| authorships[0].institutions[0].ror | https://ror.org/02kkvpp62 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I62916508 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Technical University of Munich |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Miriam Abele |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Technical University of Munich |
| authorships[1].author.id | https://openalex.org/A5002883358 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7799-6091 |
| authorships[1].author.display_name | Armin Soleymaniniya |
| authorships[1].countries | DE, DK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I62916508 |
| authorships[1].affiliations[0].raw_affiliation_string | Technical University of Munich |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I96673099 |
| authorships[1].affiliations[1].raw_affiliation_string | Technical University of Denmark |
| authorships[1].institutions[0].id | https://openalex.org/I62916508 |
| authorships[1].institutions[0].ror | https://ror.org/02kkvpp62 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I62916508 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Technical University of Munich |
| authorships[1].institutions[1].id | https://openalex.org/I96673099 |
| authorships[1].institutions[1].ror | https://ror.org/04qtj9h94 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I96673099 |
| authorships[1].institutions[1].country_code | DK |
| authorships[1].institutions[1].display_name | Technical University of Denmark |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Armin Soleymaniniya |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Technical University of Denmark, Technical University of Munich |
| authorships[2].author.id | https://openalex.org/A5017739281 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4041-6233 |
| authorships[2].author.display_name | Etienne V. Doll |
| authorships[2].countries | DE, DK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I96673099 |
| authorships[2].affiliations[0].raw_affiliation_string | Technical University of Denmark |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I62916508 |
| authorships[2].affiliations[1].raw_affiliation_string | Technical University of Munich |
| authorships[2].institutions[0].id | https://openalex.org/I62916508 |
| authorships[2].institutions[0].ror | https://ror.org/02kkvpp62 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I62916508 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Technical University of Munich |
| authorships[2].institutions[1].id | https://openalex.org/I96673099 |
| authorships[2].institutions[1].ror | https://ror.org/04qtj9h94 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I96673099 |
| authorships[2].institutions[1].country_code | DK |
| authorships[2].institutions[1].display_name | Technical University of Denmark |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Etienne Doll |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Technical University of Denmark, Technical University of Munich |
| authorships[3].author.id | https://openalex.org/A5073323936 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3119-4448 |
| authorships[3].author.display_name | Michaela Kreitmeier |
| authorships[3].countries | DE, DK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I62916508 |
| authorships[3].affiliations[0].raw_affiliation_string | Technical University of Munich |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I96673099 |
| authorships[3].affiliations[1].raw_affiliation_string | Technical University of Denmark |
| authorships[3].institutions[0].id | https://openalex.org/I62916508 |
| authorships[3].institutions[0].ror | https://ror.org/02kkvpp62 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I62916508 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Technical University of Munich |
| authorships[3].institutions[1].id | https://openalex.org/I96673099 |
| authorships[3].institutions[1].ror | https://ror.org/04qtj9h94 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I96673099 |
| authorships[3].institutions[1].country_code | DK |
| authorships[3].institutions[1].display_name | Technical University of Denmark |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Michaela Kreitmeier |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Technical University of Denmark, Technical University of Munich |
| authorships[4].author.id | https://openalex.org/A5088462649 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6263-8021 |
| authorships[4].author.display_name | Matteo Mori |
| authorships[4].countries | DE, DK |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I62916508 |
| authorships[4].affiliations[0].raw_affiliation_string | Technical University of Munich |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I96673099 |
| authorships[4].affiliations[1].raw_affiliation_string | Technical University of Denmark |
| authorships[4].institutions[0].id | https://openalex.org/I62916508 |
| authorships[4].institutions[0].ror | https://ror.org/02kkvpp62 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I62916508 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | Technical University of Munich |
| authorships[4].institutions[1].id | https://openalex.org/I96673099 |
| authorships[4].institutions[1].ror | https://ror.org/04qtj9h94 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I96673099 |
| authorships[4].institutions[1].country_code | DK |
| authorships[4].institutions[1].display_name | Technical University of Denmark |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Matteo Mori |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Technical University of Denmark, Technical University of Munich |
| authorships[5].author.id | https://openalex.org/A5038703910 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6020-2814 |
| authorships[5].author.display_name | Klaus Neuhaus |
| authorships[5].countries | DE, DK |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I62916508 |
| authorships[5].affiliations[0].raw_affiliation_string | Technical University of Munich |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I96673099 |
| authorships[5].affiliations[1].raw_affiliation_string | Technical University of Denmark |
| authorships[5].institutions[0].id | https://openalex.org/I62916508 |
| authorships[5].institutions[0].ror | https://ror.org/02kkvpp62 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I62916508 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | Technical University of Munich |
| authorships[5].institutions[1].id | https://openalex.org/I96673099 |
| authorships[5].institutions[1].ror | https://ror.org/04qtj9h94 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I96673099 |
| authorships[5].institutions[1].country_code | DK |
| authorships[5].institutions[1].display_name | Technical University of Denmark |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Klaus Neuhaus |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Technical University of Denmark, Technical University of Munich |
| authorships[6].author.id | https://openalex.org/A5052704218 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1837-6842 |
| authorships[6].author.display_name | Terence Hwa |
| authorships[6].countries | DE, DK |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I62916508 |
| authorships[6].affiliations[0].raw_affiliation_string | Technical University of Munich |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I96673099 |
| authorships[6].affiliations[1].raw_affiliation_string | Technical University of Denmark |
| authorships[6].institutions[0].id | https://openalex.org/I62916508 |
| authorships[6].institutions[0].ror | https://ror.org/02kkvpp62 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I62916508 |
| authorships[6].institutions[0].country_code | DE |
| authorships[6].institutions[0].display_name | Technical University of Munich |
| authorships[6].institutions[1].id | https://openalex.org/I96673099 |
| authorships[6].institutions[1].ror | https://ror.org/04qtj9h94 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I96673099 |
| authorships[6].institutions[1].country_code | DK |
| authorships[6].institutions[1].display_name | Technical University of Denmark |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Terence Hwa |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Technical University of Denmark, Technical University of Munich |
| authorships[7].author.id | https://openalex.org/A5044267892 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | B. Kuester |
| authorships[7].countries | DE, DK |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I62916508 |
| authorships[7].affiliations[0].raw_affiliation_string | Technical University of Munich |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I96673099 |
| authorships[7].affiliations[1].raw_affiliation_string | Technical University of Denmark |
| authorships[7].institutions[0].id | https://openalex.org/I62916508 |
| authorships[7].institutions[0].ror | https://ror.org/02kkvpp62 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I62916508 |
| authorships[7].institutions[0].country_code | DE |
| authorships[7].institutions[0].display_name | Technical University of Munich |
| authorships[7].institutions[1].id | https://openalex.org/I96673099 |
| authorships[7].institutions[1].ror | https://ror.org/04qtj9h94 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I96673099 |
| authorships[7].institutions[1].country_code | DK |
| authorships[7].institutions[1].display_name | Technical University of Denmark |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Bernhard Kuester |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Technical University of Denmark, Technical University of Munich |
| authorships[8].author.id | https://openalex.org/A5090320822 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-6131-7322 |
| authorships[8].author.display_name | Christina Ludwig |
| authorships[8].countries | DE, DK |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I96673099 |
| authorships[8].affiliations[0].raw_affiliation_string | Technical University of Denmark |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I62916508 |
| authorships[8].affiliations[1].raw_affiliation_string | Technical University of Munich |
| authorships[8].institutions[0].id | https://openalex.org/I62916508 |
| authorships[8].institutions[0].ror | https://ror.org/02kkvpp62 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I62916508 |
| authorships[8].institutions[0].country_code | DE |
| authorships[8].institutions[0].display_name | Technical University of Munich |
| authorships[8].institutions[1].id | https://openalex.org/I96673099 |
| authorships[8].institutions[1].ror | https://ror.org/04qtj9h94 |
| authorships[8].institutions[1].type | education |
| authorships[8].institutions[1].lineage | https://openalex.org/I96673099 |
| authorships[8].institutions[1].country_code | DK |
| authorships[8].institutions[1].display_name | Technical University of Denmark |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Christina Ludwig |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Technical University of Denmark, Technical University of Munich |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://www.jbc.org/article/S0021925824011049/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Abstract 1422 Merits of deep and fast proteomics for bacterial proteome profiling |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10519 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 0.9316999912261963 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1607 |
| primary_topic.subfield.display_name | Spectroscopy |
| primary_topic.display_name | Advanced Proteomics Techniques and Applications |
| related_works | https://openalex.org/W1982829397, https://openalex.org/W2347437365, https://openalex.org/W2106414650, https://openalex.org/W1999412725, https://openalex.org/W4390205769, https://openalex.org/W2124137418, https://openalex.org/W2391458050, https://openalex.org/W3022402204, https://openalex.org/W2086860678, https://openalex.org/W2114732768 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.jbc.2024.106631 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S140251998 |
| best_oa_location.source.issn | 0021-9258, 1067-8816, 1083-351X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0021-9258 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Biological Chemistry |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | http://www.jbc.org/article/S0021925824011049/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Biological Chemistry |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.jbc.2024.106631 |
| primary_location.id | doi:10.1016/j.jbc.2024.106631 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S140251998 |
| primary_location.source.issn | 0021-9258, 1067-8816, 1083-351X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0021-9258 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Biological Chemistry |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.license | cc-by |
| primary_location.pdf_url | http://www.jbc.org/article/S0021925824011049/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Biological Chemistry |
| primary_location.landing_page_url | https://doi.org/10.1016/j.jbc.2024.106631 |
| publication_date | 2024-03-01 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 89 |
| abstract_inverted_index.a | 97, 132, 197, 320, 395, 399 |
| abstract_inverted_index.18 | 249 |
| abstract_inverted_index.In | 78 |
| abstract_inverted_index.To | 112 |
| abstract_inverted_index.We | 158, 269 |
| abstract_inverted_index.an | 206 |
| abstract_inverted_index.as | 240, 394 |
| abstract_inverted_index.at | 108, 143 |
| abstract_inverted_index.be | 329 |
| abstract_inverted_index.by | 348, 411, 414, 441 |
| abstract_inverted_index.i) | 127 |
| abstract_inverted_index.in | 2, 18, 211, 295, 339, 383, 404 |
| abstract_inverted_index.is | 16, 257, 319 |
| abstract_inverted_index.of | 22, 73, 93, 117, 131, 135, 149, 169, 235, 273, 284, 301, 304, 359, 392, 402, 419 |
| abstract_inverted_index.on | 53, 119, 205, 232, 277, 331 |
| abstract_inverted_index.to | 80, 104, 164, 220, 259, 265, 293, 380 |
| abstract_inverted_index.we | 122, 230, 335 |
| abstract_inverted_index.305 | 305 |
| abstract_inverted_index.40% | 234 |
| abstract_inverted_index.480 | 209 |
| abstract_inverted_index.DIA | 212 |
| abstract_inverted_index.For | 62 |
| abstract_inverted_index.MCB | 432 |
| abstract_inverted_index.NIH | 435 |
| abstract_inverted_index.NSF | 430 |
| abstract_inverted_index.The | 172, 254 |
| abstract_inverted_index.all | 236 |
| abstract_inverted_index.and | 24, 32, 45, 67, 96, 151, 154, 186, 224, 247, 263, 287, 327, 434 |
| abstract_inverted_index.big | 5 |
| abstract_inverted_index.for | 139, 242, 311, 323, 367, 398 |
| abstract_inverted_index.has | 8 |
| abstract_inverted_index.ii) | 137 |
| abstract_inverted_index.iv) | 155 |
| abstract_inverted_index.our | 20, 353 |
| abstract_inverted_index.set | 134 |
| abstract_inverted_index.six | 161, 244 |
| abstract_inverted_index.the | 28, 71, 114, 128, 147, 166, 170, 243, 271, 274, 299, 324, 340, 357, 376, 390, 415, 420 |
| abstract_inverted_index.was | 194, 216, 409, 439 |
| abstract_inverted_index.100% | 181 |
| abstract_inverted_index.2020 | 417 |
| abstract_inverted_index.A.S. | 438 |
| abstract_inverted_index.Data | 192, 214 |
| abstract_inverted_index.T.H. | 426 |
| abstract_inverted_index.TFA, | 182 |
| abstract_inverted_index.This | 407 |
| abstract_inverted_index.With | 227 |
| abstract_inverted_index.also | 355 |
| abstract_inverted_index.been | 51 |
| abstract_inverted_index.cell | 65, 75, 178 |
| abstract_inverted_index.coli | 286 |
| abstract_inverted_index.data | 6, 43, 46 |
| abstract_inverted_index.easy | 258 |
| abstract_inverted_index.four | 278 |
| abstract_inverted_index.from | 378, 429 |
| abstract_inverted_index.full | 115 |
| abstract_inverted_index.have | 49 |
| abstract_inverted_index.iii) | 146 |
| abstract_inverted_index.many | 36 |
| abstract_inverted_index.most | 48 |
| abstract_inverted_index.only | 50 |
| abstract_inverted_index.open | 237 |
| abstract_inverted_index.over | 87, 196, 312 |
| abstract_inverted_index.rich | 379 |
| abstract_inverted_index.that | 370 |
| abstract_inverted_index.this | 228, 316 |
| abstract_inverted_index.tool | 397 |
| abstract_inverted_index.used | 366 |
| abstract_inverted_index.very | 59 |
| abstract_inverted_index.were | 365 |
| abstract_inverted_index.wide | 400 |
| abstract_inverted_index.will | 328 |
| abstract_inverted_index.with | 4, 27, 160, 180, 189, 201, 218 |
| abstract_inverted_index.Grant | 431, 436 |
| abstract_inverted_index.Last, | 352 |
| abstract_inverted_index.These | 386 |
| abstract_inverted_index.Union | 422 |
| abstract_inverted_index.coli. | 385 |
| abstract_inverted_index.data, | 363 |
| abstract_inverted_index.e.g., | 345 |
| abstract_inverted_index.exist | 39 |
| abstract_inverted_index.human | 33 |
| abstract_inverted_index.lysis | 76, 179 |
| abstract_inverted_index.mode. | 213 |
| abstract_inverted_index.model | 341 |
| abstract_inverted_index.offer | 84 |
| abstract_inverted_index.other | 30 |
| abstract_inverted_index.range | 92, 401 |
| abstract_inverted_index.rigid | 64 |
| abstract_inverted_index.their | 25 |
| abstract_inverted_index.these | 81 |
| abstract_inverted_index.walls | 66 |
| abstract_inverted_index.which | 364 |
| abstract_inverted_index.(grant | 444 |
| abstract_inverted_index.Bayern | 443 |
| abstract_inverted_index.DIA-NN | 219 |
| abstract_inverted_index.First, | 280 |
| abstract_inverted_index.Third, | 334 |
| abstract_inverted_index.affect | 70 |
| abstract_inverted_index.cereus | 289 |
| abstract_inverted_index.choice | 72 |
| abstract_inverted_index.costs, | 145 |
| abstract_inverted_index.depth. | 111 |
| abstract_inverted_index.during | 375 |
| abstract_inverted_index.enzyme | 372 |
| abstract_inverted_index.faster | 101 |
| abstract_inverted_index.frames | 239 |
| abstract_inverted_index.funded | 413 |
| abstract_inverted_index.genes. | 314, 351 |
| abstract_inverted_index.genome | 99 |
| abstract_inverted_index.highly | 250 |
| abstract_inverted_index.hosted | 330 |
| abstract_inverted_index.linear | 199 |
| abstract_inverted_index.medium | 382 |
| abstract_inverted_index.merits | 272 |
| abstract_inverted_index.models | 369 |
| abstract_inverted_index.number | 148, 424, 445 |
| abstract_inverted_index.sample | 141, 174 |
| abstract_inverted_index.setup, | 229 |
| abstract_inverted_index.tandem | 105 |
| abstract_inverted_index.worked | 159 |
| abstract_inverted_index.(sample | 40 |
| abstract_inverted_index.1818384 | 433 |
| abstract_inverted_index.500,000 | 313 |
| abstract_inverted_index.EPIC-XS | 412 |
| abstract_inverted_index.Horizon | 416 |
| abstract_inverted_index.Second, | 298 |
| abstract_inverted_index.achieve | 221 |
| abstract_inverted_index.another | 248 |
| abstract_inverted_index.certain | 85 |
| abstract_inverted_index.changes | 294 |
| abstract_inverted_index.coupled | 103 |
| abstract_inverted_index.dataset | 318 |
| abstract_inverted_index.diverse | 133, 251 |
| abstract_inverted_index.dynamic | 91 |
| abstract_inverted_index.enables | 100 |
| abstract_inverted_index.encoded | 347 |
| abstract_inverted_index.explain | 371 |
| abstract_inverted_index.exploit | 113 |
| abstract_inverted_index.factors | 69 |
| abstract_inverted_index.funding | 428 |
| abstract_inverted_index.general | 167 |
| abstract_inverted_index.health. | 34 |
| abstract_inverted_index.maximal | 222 |
| abstract_inverted_index.methods | 38, 107 |
| abstract_inverted_index.minimal | 381 |
| abstract_inverted_index.optimal | 173 |
| abstract_inverted_index.peptide | 150, 223 |
| abstract_inverted_index.pivotal | 17 |
| abstract_inverted_index.possess | 58 |
| abstract_inverted_index.present | 270 |
| abstract_inverted_index.program | 418 |
| abstract_inverted_index.protein | 94, 152, 184, 225 |
| abstract_inverted_index.reading | 238 |
| abstract_inverted_index.robust, | 261 |
| abstract_inverted_index.science | 7 |
| abstract_inverted_index.smaller | 90, 98 |
| abstract_inverted_index.species | 163, 246, 307 |
| abstract_inverted_index.synergy | 3 |
| abstract_inverted_index.(project | 423 |
| abstract_inverted_index.823839). | 425 |
| abstract_inverted_index.Although | 35 |
| abstract_inverted_index.Bacillus | 288 |
| abstract_inverted_index.European | 421 |
| abstract_inverted_index.Exploris | 208 |
| abstract_inverted_index.However, | 56 |
| abstract_inverted_index.Orbitrap | 207 |
| abstract_inverted_index.absolute | 361 |
| abstract_inverted_index.addition | 79 |
| abstract_inverted_index.advanced | 10 |
| abstract_inverted_index.analyses | 283 |
| abstract_inverted_index.analysis | 215 |
| abstract_inverted_index.average, | 233 |
| abstract_inverted_index.bacteria | 23, 57, 83 |
| abstract_inverted_index.baseline | 302 |
| abstract_inverted_index.combines | 177 |
| abstract_inverted_index.constant | 109 |
| abstract_inverted_index.describe | 336 |
| abstract_inverted_index.dilution | 188 |
| abstract_inverted_index.embedded | 350 |
| abstract_inverted_index.evaluate | 165 |
| abstract_inverted_index.evidence | 310 |
| abstract_inverted_index.example, | 63 |
| abstract_inverted_index.examples | 388 |
| abstract_inverted_index.gradient | 200 |
| abstract_inverted_index.kinetics | 374 |
| abstract_inverted_index.operated | 210 |
| abstract_inverted_index.organism | 342 |
| abstract_inverted_index.perform, | 260 |
| abstract_inverted_index.proposed | 255, 275 |
| abstract_inverted_index.proteins | 338, 346 |
| abstract_inverted_index.proteome | 14, 282 |
| abstract_inverted_index.protocol | 176 |
| abstract_inverted_index.provides | 308 |
| abstract_inverted_index.received | 427 |
| abstract_inverted_index.reliable | 156 |
| abstract_inverted_index.research | 408 |
| abstract_inverted_index.resource | 322 |
| abstract_inverted_index.samples, | 121 |
| abstract_inverted_index.samples. | 55 |
| abstract_inverted_index.species. | 253 |
| abstract_inverted_index.suitable | 74 |
| abstract_inverted_index.supports | 356 |
| abstract_inverted_index.tailored | 264 |
| abstract_inverted_index.valuable | 321 |
| abstract_inverted_index.workflow | 256, 276, 354 |
| abstract_inverted_index.30-minute | 198 |
| abstract_inverted_index.Bottom-up | 0 |
| abstract_inverted_index.adaptions | 292 |
| abstract_inverted_index.advancing | 19 |
| abstract_inverted_index.bacteria, | 136 |
| abstract_inverted_index.bacterial | 120, 252, 306 |
| abstract_inverted_index.community | 326 |
| abstract_inverted_index.detected, | 231 |
| abstract_inverted_index.evaluated | 123 |
| abstract_inverted_index.examples: | 279 |
| abstract_inverted_index.highlight | 290 |
| abstract_inverted_index.knowledge | 21 |
| abstract_inverted_index.metabolic | 291 |
| abstract_inverted_index.minimized | 144 |
| abstract_inverted_index.performed | 195, 217 |
| abstract_inverted_index.potential | 116, 391 |
| abstract_inverted_index.profiling | 15 |
| abstract_inverted_index.projects. | 268 |
| abstract_inverted_index.proteomes | 303 |
| abstract_inverted_index.proteomic | 37, 110 |
| abstract_inverted_index.protocols | 125 |
| abstract_inverted_index.research. | 12, 406 |
| abstract_inverted_index.supported | 410, 440 |
| abstract_inverted_index.validated | 52, 241 |
| abstract_inverted_index.versatile | 396 |
| abstract_inverted_index.advantages | 86 |
| abstract_inverted_index.analysis), | 47 |
| abstract_inverted_index.chaotropic | 187 |
| abstract_inverted_index.concerning | 126 |
| abstract_inverted_index.digestion, | 185 |
| abstract_inverted_index.efficiency | 130 |
| abstract_inverted_index.eukaryotic | 54 |
| abstract_inverted_index.expression | 95, 373 |
| abstract_inverted_index.generation | 358 |
| abstract_inverted_index.increasing | 202 |
| abstract_inverted_index.label-free | 360 |
| abstract_inverted_index.organisms, | 31 |
| abstract_inverted_index.proteomics | 1, 118, 393 |
| abstract_inverted_index.transition | 377 |
| abstract_inverted_index.workflows. | 171 |
| abstract_inverted_index.Escherichia | 285, 384 |
| abstract_inverted_index.Pseudomonas | 343 |
| abstract_inverted_index.acquisition | 193 |
| abstract_inverted_index.aeruginosa, | 344 |
| abstract_inverted_index.challenges, | 82 |
| abstract_inverted_index.comparative | 281 |
| abstract_inverted_index.conditions. | 297 |
| abstract_inverted_index.cultivation | 296 |
| abstract_inverted_index.demonstrate | 389 |
| abstract_inverted_index.distinctive | 60 |
| abstract_inverted_index.established | 124 |
| abstract_inverted_index.eukaryotes: | 88 |
| abstract_inverted_index.extraction. | 191 |
| abstract_inverted_index.in-solution | 183 |
| abstract_inverted_index.large-scale | 266 |
| abstract_inverted_index.overlapping | 349 |
| abstract_inverted_index.preparation | 142, 175 |
| abstract_inverted_index.prokaryotic | 405 |
| abstract_inverted_index.solid-phase | 190 |
| abstract_inverted_index.strategies. | 77 |
| abstract_inverted_index.suitability | 138 |
| abstract_inverted_index.ProteomicsDB | 332 |
| abstract_inverted_index.R01GM109069. | 437 |
| abstract_inverted_index.acetonitrile | 203 |
| abstract_inverted_index.acquisition, | 44 |
| abstract_inverted_index.applications | 403 |
| abstract_inverted_index.environment, | 29 |
| abstract_inverted_index.experimental | 309 |
| abstract_inverted_index.illustrative | 387 |
| abstract_inverted_index.inactivation | 129 |
| abstract_inverted_index.interactions | 26 |
| abstract_inverted_index.mathematical | 368 |
| abstract_inverted_index.preparation, | 41 |
| abstract_inverted_index.quantitative | 362 |
| abstract_inverted_index.Additionally, | 315 |
| abstract_inverted_index.Comprehensive | 13 |
| abstract_inverted_index.Elitenetzwerk | 442 |
| abstract_inverted_index.applicability | 168 |
| abstract_inverted_index.comprehensive | 317 |
| abstract_inverted_index.non-canonical | 337 |
| abstract_inverted_index.pathogenicity | 68 |
| abstract_inverted_index.reproducible, | 262 |
| abstract_inverted_index.significantly | 9 |
| abstract_inverted_index.concentrations | 204 |
| abstract_inverted_index.representative | 162, 245 |
| abstract_inverted_index.high-throughput | 140 |
| abstract_inverted_index.microbiological | 11, 267, 325 |
| abstract_inverted_index.quantification. | 157 |
| abstract_inverted_index.characteristics. | 61 |
| abstract_inverted_index.characterization | 300 |
| abstract_inverted_index.identifications, | 153 |
| abstract_inverted_index.identifications. | 226 |
| abstract_inverted_index.mass-spectrometry | 106 |
| abstract_inverted_index.mass-spectrometric | 42 |
| abstract_inverted_index.liquid-chromatography | 102 |
| abstract_inverted_index.F-6-M5613.6.K-NW-2021-411/1/1). | 446 |
| abstract_inverted_index.(https://www.proteomicsdb.org/). | 333 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile.value | 0.04356501 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |