Abstract representations underlie rhythm perception and production: Evidence from a probabilistic model of temporal structure Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.31234/osf.io/ey5sb_v1
Rhythm, such as in music, contains structure in the form of rhythmic patterns: the more or less predictable successions of longer and shorter intervals (i.e., the “morse code” of the rhythm). Listeners can use rhythmic patterns to predict the timing of sounds and guide their perception and action. It is still unclear how rhythmic patterns are represented in the human mind. Here, we used a probabilistic model of auditory expectations to simulate the perception and production of rhythmic patterns. We modelled expectations in rhythmic sequences at three different levels of abstraction: as the predictability of absolute inter-onset intervals (IOI), ratios between successive intervals (ratio), and the direction of change of successive intervals (contour). Subsequently, we selected rhythms that varied maximally in their modeled predictability across the three levels of abstraction for three behavioral tasks: a target detection task in which the rhythm was not task-relevant (implicit task), a complexity rating task (explicit task), and a tapping task (motor task). We found that both ratio and contour affected behavioral responses across all tasks, with the largest effects in the explicit rating task. IOI only affected responses for the explicit and motor tasks, where the rhythm was task-relevant, and to a greater extent when an imprecise, categorical representation of IOI was assumed. These findings suggest that humans rely mostly on imprecise representations of rhythmic patterns, but may flexibly adapt their representation based on task demands.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.31234/osf.io/ey5sb_v1
- https://osf.io/ey5sb_v1/download
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409339956
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409339956Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.31234/osf.io/ey5sb_v1Digital Object Identifier
- Title
-
Abstract representations underlie rhythm perception and production: Evidence from a probabilistic model of temporal structureWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-10Full publication date if available
- Authors
-
Fleur L. Bouwer, Atser Damsma, Marcus T. Pearce, Mohsen Ghorashi Sarvestani, Thomas KaplanList of authors in order
- Landing page
-
https://doi.org/10.31234/osf.io/ey5sb_v1Publisher landing page
- PDF URL
-
https://osf.io/ey5sb_v1/downloadDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://osf.io/ey5sb_v1/downloadDirect OA link when available
- Concepts
-
Rhythm, Perception, Production (economics), Probabilistic logic, Cognitive psychology, Psychology, Cognitive science, Neuroscience, Computer science, Artificial intelligence, Medicine, Economics, Internal medicine, MacroeconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409339956 |
|---|---|
| doi | https://doi.org/10.31234/osf.io/ey5sb_v1 |
| ids.doi | https://doi.org/10.31234/osf.io/ey5sb_v1 |
| ids.openalex | https://openalex.org/W4409339956 |
| fwci | 0.0 |
| type | preprint |
| title | Abstract representations underlie rhythm perception and production: Evidence from a probabilistic model of temporal structure |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10788 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9503999948501587 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Neuroscience and Music Perception |
| topics[1].id | https://openalex.org/T12032 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.9348999857902527 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3205 |
| topics[1].subfield.display_name | Experimental and Cognitive Psychology |
| topics[1].display_name | Multisensory perception and integration |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C135343436 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7922489643096924 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q170406 |
| concepts[0].display_name | Rhythm |
| concepts[1].id | https://openalex.org/C26760741 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6147712469100952 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q160402 |
| concepts[1].display_name | Perception |
| concepts[2].id | https://openalex.org/C2778348673 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5834905505180359 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q739302 |
| concepts[2].display_name | Production (economics) |
| concepts[3].id | https://openalex.org/C49937458 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5450246334075928 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[3].display_name | Probabilistic logic |
| concepts[4].id | https://openalex.org/C180747234 |
| concepts[4].level | 1 |
| concepts[4].score | 0.46084094047546387 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[4].display_name | Cognitive psychology |
| concepts[5].id | https://openalex.org/C15744967 |
| concepts[5].level | 0 |
| concepts[5].score | 0.40683114528656006 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[5].display_name | Psychology |
| concepts[6].id | https://openalex.org/C188147891 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3772850036621094 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q147638 |
| concepts[6].display_name | Cognitive science |
| concepts[7].id | https://openalex.org/C169760540 |
| concepts[7].level | 1 |
| concepts[7].score | 0.338643342256546 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[7].display_name | Neuroscience |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.31574875116348267 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.17180761694908142 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C71924100 |
| concepts[10].level | 0 |
| concepts[10].score | 0.1583346724510193 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[10].display_name | Medicine |
| concepts[11].id | https://openalex.org/C162324750 |
| concepts[11].level | 0 |
| concepts[11].score | 0.15619009733200073 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[11].display_name | Economics |
| concepts[12].id | https://openalex.org/C126322002 |
| concepts[12].level | 1 |
| concepts[12].score | 0.07011312246322632 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[12].display_name | Internal medicine |
| concepts[13].id | https://openalex.org/C139719470 |
| concepts[13].level | 1 |
| concepts[13].score | 0.05718564987182617 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q39680 |
| concepts[13].display_name | Macroeconomics |
| keywords[0].id | https://openalex.org/keywords/rhythm |
| keywords[0].score | 0.7922489643096924 |
| keywords[0].display_name | Rhythm |
| keywords[1].id | https://openalex.org/keywords/perception |
| keywords[1].score | 0.6147712469100952 |
| keywords[1].display_name | Perception |
| keywords[2].id | https://openalex.org/keywords/production |
| keywords[2].score | 0.5834905505180359 |
| keywords[2].display_name | Production (economics) |
| keywords[3].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[3].score | 0.5450246334075928 |
| keywords[3].display_name | Probabilistic logic |
| keywords[4].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[4].score | 0.46084094047546387 |
| keywords[4].display_name | Cognitive psychology |
| keywords[5].id | https://openalex.org/keywords/psychology |
| keywords[5].score | 0.40683114528656006 |
| keywords[5].display_name | Psychology |
| keywords[6].id | https://openalex.org/keywords/cognitive-science |
| keywords[6].score | 0.3772850036621094 |
| keywords[6].display_name | Cognitive science |
| keywords[7].id | https://openalex.org/keywords/neuroscience |
| keywords[7].score | 0.338643342256546 |
| keywords[7].display_name | Neuroscience |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.31574875116348267 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.17180761694908142 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/medicine |
| keywords[10].score | 0.1583346724510193 |
| keywords[10].display_name | Medicine |
| keywords[11].id | https://openalex.org/keywords/economics |
| keywords[11].score | 0.15619009733200073 |
| keywords[11].display_name | Economics |
| keywords[12].id | https://openalex.org/keywords/internal-medicine |
| keywords[12].score | 0.07011312246322632 |
| keywords[12].display_name | Internal medicine |
| keywords[13].id | https://openalex.org/keywords/macroeconomics |
| keywords[13].score | 0.05718564987182617 |
| keywords[13].display_name | Macroeconomics |
| language | en |
| locations[0].id | doi:10.31234/osf.io/ey5sb_v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://osf.io/ey5sb_v1/download |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.31234/osf.io/ey5sb_v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5020585250 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7064-7481 |
| authorships[0].author.display_name | Fleur L. Bouwer |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fleur L. Bouwer |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5069299731 |
| authorships[1].author.orcid | https://orcid.org/0009-0001-6240-4145 |
| authorships[1].author.display_name | Atser Damsma |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Atser Damsma |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5046843039 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1282-431X |
| authorships[2].author.display_name | Marcus T. Pearce |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Marcus Thomas Pearce |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5117103520 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Mohsen Ghorashi Sarvestani |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mohsen Ghorashi Sarvestani |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5013216121 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3512-5594 |
| authorships[4].author.display_name | Thomas Kaplan |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Thomas Kaplan |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://osf.io/ey5sb_v1/download |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Abstract representations underlie rhythm perception and production: Evidence from a probabilistic model of temporal structure |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10788 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9503999948501587 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Neuroscience and Music Perception |
| related_works | https://openalex.org/W2072492413, https://openalex.org/W2997159972, https://openalex.org/W4296378967, https://openalex.org/W2064134577, https://openalex.org/W2373995729, https://openalex.org/W2157038729, https://openalex.org/W2393707162, https://openalex.org/W2027715794, https://openalex.org/W3203096336, https://openalex.org/W2043981220 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.31234/osf.io/ey5sb_v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://osf.io/ey5sb_v1/download |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.31234/osf.io/ey5sb_v1 |
| primary_location.id | doi:10.31234/osf.io/ey5sb_v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://osf.io/ey5sb_v1/download |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.31234/osf.io/ey5sb_v1 |
| publication_date | 2025-04-10 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 64, 134, 147, 154, 198 |
| abstract_inverted_index.It | 48 |
| abstract_inverted_index.We | 79, 159 |
| abstract_inverted_index.an | 202 |
| abstract_inverted_index.as | 2, 91 |
| abstract_inverted_index.at | 85 |
| abstract_inverted_index.in | 3, 7, 57, 82, 120, 138, 176 |
| abstract_inverted_index.is | 49 |
| abstract_inverted_index.of | 10, 19, 28, 40, 67, 76, 89, 94, 107, 109, 128, 206, 220 |
| abstract_inverted_index.on | 217, 230 |
| abstract_inverted_index.or | 15 |
| abstract_inverted_index.to | 36, 70, 197 |
| abstract_inverted_index.we | 62, 114 |
| abstract_inverted_index.IOI | 181, 207 |
| abstract_inverted_index.all | 170 |
| abstract_inverted_index.and | 21, 42, 46, 74, 104, 153, 164, 188, 196 |
| abstract_inverted_index.are | 55 |
| abstract_inverted_index.but | 223 |
| abstract_inverted_index.can | 32 |
| abstract_inverted_index.for | 130, 185 |
| abstract_inverted_index.how | 52 |
| abstract_inverted_index.may | 224 |
| abstract_inverted_index.not | 143 |
| abstract_inverted_index.the | 8, 13, 25, 29, 38, 58, 72, 92, 105, 125, 140, 173, 177, 186, 192 |
| abstract_inverted_index.use | 33 |
| abstract_inverted_index.was | 142, 194, 208 |
| abstract_inverted_index.both | 162 |
| abstract_inverted_index.form | 9 |
| abstract_inverted_index.less | 16 |
| abstract_inverted_index.more | 14 |
| abstract_inverted_index.only | 182 |
| abstract_inverted_index.rely | 215 |
| abstract_inverted_index.such | 1 |
| abstract_inverted_index.task | 137, 150, 156, 231 |
| abstract_inverted_index.that | 117, 161, 213 |
| abstract_inverted_index.used | 63 |
| abstract_inverted_index.when | 201 |
| abstract_inverted_index.with | 172 |
| abstract_inverted_index.Here, | 61 |
| abstract_inverted_index.These | 210 |
| abstract_inverted_index.adapt | 226 |
| abstract_inverted_index.based | 229 |
| abstract_inverted_index.found | 160 |
| abstract_inverted_index.guide | 43 |
| abstract_inverted_index.human | 59 |
| abstract_inverted_index.mind. | 60 |
| abstract_inverted_index.model | 66 |
| abstract_inverted_index.motor | 189 |
| abstract_inverted_index.ratio | 163 |
| abstract_inverted_index.still | 50 |
| abstract_inverted_index.task. | 180 |
| abstract_inverted_index.their | 44, 121, 227 |
| abstract_inverted_index.three | 86, 126, 131 |
| abstract_inverted_index.where | 191 |
| abstract_inverted_index.which | 139 |
| abstract_inverted_index.(IOI), | 98 |
| abstract_inverted_index.(i.e., | 24 |
| abstract_inverted_index.(motor | 157 |
| abstract_inverted_index.across | 124, 169 |
| abstract_inverted_index.change | 108 |
| abstract_inverted_index.extent | 200 |
| abstract_inverted_index.humans | 214 |
| abstract_inverted_index.levels | 88, 127 |
| abstract_inverted_index.longer | 20 |
| abstract_inverted_index.mostly | 216 |
| abstract_inverted_index.music, | 4 |
| abstract_inverted_index.rating | 149, 179 |
| abstract_inverted_index.ratios | 99 |
| abstract_inverted_index.rhythm | 141, 193 |
| abstract_inverted_index.sounds | 41 |
| abstract_inverted_index.target | 135 |
| abstract_inverted_index.task), | 146, 152 |
| abstract_inverted_index.task). | 158 |
| abstract_inverted_index.tasks, | 171, 190 |
| abstract_inverted_index.tasks: | 133 |
| abstract_inverted_index.timing | 39 |
| abstract_inverted_index.varied | 118 |
| abstract_inverted_index.Rhythm, | 0 |
| abstract_inverted_index.action. | 47 |
| abstract_inverted_index.between | 100 |
| abstract_inverted_index.code” | 27 |
| abstract_inverted_index.contour | 165 |
| abstract_inverted_index.effects | 175 |
| abstract_inverted_index.greater | 199 |
| abstract_inverted_index.largest | 174 |
| abstract_inverted_index.modeled | 122 |
| abstract_inverted_index.predict | 37 |
| abstract_inverted_index.rhythms | 116 |
| abstract_inverted_index.shorter | 22 |
| abstract_inverted_index.suggest | 212 |
| abstract_inverted_index.tapping | 155 |
| abstract_inverted_index.unclear | 51 |
| abstract_inverted_index.(ratio), | 103 |
| abstract_inverted_index.absolute | 95 |
| abstract_inverted_index.affected | 166, 183 |
| abstract_inverted_index.assumed. | 209 |
| abstract_inverted_index.auditory | 68 |
| abstract_inverted_index.contains | 5 |
| abstract_inverted_index.demands. | 232 |
| abstract_inverted_index.explicit | 178, 187 |
| abstract_inverted_index.findings | 211 |
| abstract_inverted_index.flexibly | 225 |
| abstract_inverted_index.modelled | 80 |
| abstract_inverted_index.patterns | 35, 54 |
| abstract_inverted_index.rhythm). | 30 |
| abstract_inverted_index.rhythmic | 11, 34, 53, 77, 83, 221 |
| abstract_inverted_index.selected | 115 |
| abstract_inverted_index.simulate | 71 |
| abstract_inverted_index.“morse | 26 |
| abstract_inverted_index.(explicit | 151 |
| abstract_inverted_index.(implicit | 145 |
| abstract_inverted_index.Listeners | 31 |
| abstract_inverted_index.detection | 136 |
| abstract_inverted_index.different | 87 |
| abstract_inverted_index.direction | 106 |
| abstract_inverted_index.imprecise | 218 |
| abstract_inverted_index.intervals | 23, 97, 102, 111 |
| abstract_inverted_index.maximally | 119 |
| abstract_inverted_index.patterns, | 222 |
| abstract_inverted_index.patterns. | 78 |
| abstract_inverted_index.patterns: | 12 |
| abstract_inverted_index.responses | 168, 184 |
| abstract_inverted_index.sequences | 84 |
| abstract_inverted_index.structure | 6 |
| abstract_inverted_index.(contour). | 112 |
| abstract_inverted_index.behavioral | 132, 167 |
| abstract_inverted_index.complexity | 148 |
| abstract_inverted_index.imprecise, | 203 |
| abstract_inverted_index.perception | 45, 73 |
| abstract_inverted_index.production | 75 |
| abstract_inverted_index.successive | 101, 110 |
| abstract_inverted_index.abstraction | 129 |
| abstract_inverted_index.categorical | 204 |
| abstract_inverted_index.inter-onset | 96 |
| abstract_inverted_index.predictable | 17 |
| abstract_inverted_index.represented | 56 |
| abstract_inverted_index.successions | 18 |
| abstract_inverted_index.abstraction: | 90 |
| abstract_inverted_index.expectations | 69, 81 |
| abstract_inverted_index.Subsequently, | 113 |
| abstract_inverted_index.probabilistic | 65 |
| abstract_inverted_index.task-relevant | 144 |
| abstract_inverted_index.predictability | 93, 123 |
| abstract_inverted_index.representation | 205, 228 |
| abstract_inverted_index.task-relevant, | 195 |
| abstract_inverted_index.representations | 219 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.12661124 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |