Accelerated and motion‐robust in vivo T 2 mapping from radially undersampled data using bloch‐simulation‐based iterative reconstruction
Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1002/mrm.25558
Purpose Development of a quantitative transverse relaxation time (T 2 )‐mapping platform that operates at clinically feasible timescales by employing advanced image reconstruction of radially undersampled multi spin‐echo (MSE) datasets. Methods Data was acquired on phantom and in vivo at 3 Tesla using MSE protocols employing radial k‐space sampling trajectories. In order to overcome the nontrivial spin evolution associated with MSE protocols, a numerical signal model was precalculated based on Bloch simulations of the actual pulse‐sequence scheme used in the acquisition process. This signal model was subsequently incorporated into an iterative model‐based image reconstruction process, producing T 2 and proton‐density maps. Results T 2 maps of phantom and in vivo brain were successfully constructed, closely matching values produced by a single spin‐echo reference scan. High‐resolution mapping was also performed for the spinal cord in vivo, differentiating the underlying gray/white matter morphology. Conclusion The presented MSE data‐processing framework offers reliable mapping of T 2 relaxation values in a ∼5‐minute timescale, free of user‐ and scanner‐dependent variations. The use of radial k‐space sampling provides further advantages in the form of high immunity to irregular physiological motion, as well as enhanced spatial resolutions, owing to its inherent ability to perform alias‐free limited field‐of‐view imaging. Magn Reson Med 75:1346–1354, 2016. © 2015 Wiley Periodicals, Inc.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/mrm.25558
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25558
- OA Status
- bronze
- Cited By
- 51
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W1614516677
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W1614516677Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/mrm.25558Digital Object Identifier
- Title
-
Accelerated and motion‐robust in vivo
T 2 mapping from radially undersampled data using bloch‐simulation‐based iterative reconstructionWork title - Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-04-17Full publication date if available
- Authors
-
Noam Ben‐Eliezer, Daniel K. Sodickson, Timothy M. Shepherd, Graham C. Wiggins, Kai Tobias BlockList of authors in order
- Landing page
-
https://doi.org/10.1002/mrm.25558Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25558Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25558Direct OA link when available
- Concepts
-
Imaging phantom, Iterative reconstruction, Computer science, Algorithm, Scanner, Compressed sensing, Reconstruction algorithm, Computer vision, Artificial intelligence, Relaxation (psychology), SIGNAL (programming language), Physics, Optics, Programming language, Psychology, Social psychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
51Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 4, 2023: 6, 2022: 6, 2021: 7Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W1614516677 |
|---|---|
| doi | https://doi.org/10.1002/mrm.25558 |
| ids.doi | https://doi.org/10.1002/mrm.25558 |
| ids.mag | 1614516677 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/25891292 |
| ids.openalex | https://openalex.org/W1614516677 |
| fwci | 4.05968403 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000328 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Adult |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000465 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Algorithms |
| mesh[2].qualifier_ui | Q000000981 |
| mesh[2].descriptor_ui | D001921 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | diagnostic imaging |
| mesh[2].descriptor_name | Brain |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D003198 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Computer Simulation |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D006801 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Humans |
| mesh[5].qualifier_ui | Q000379 |
| mesh[5].descriptor_ui | D007091 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | methods |
| mesh[5].descriptor_name | Image Processing, Computer-Assisted |
| mesh[6].qualifier_ui | Q000379 |
| mesh[6].descriptor_ui | D008279 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | methods |
| mesh[6].descriptor_name | Magnetic Resonance Imaging |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D019047 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Phantoms, Imaging |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000328 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Adult |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000465 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Algorithms |
| mesh[10].qualifier_ui | Q000000981 |
| mesh[10].descriptor_ui | D001921 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | diagnostic imaging |
| mesh[10].descriptor_name | Brain |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D003198 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Computer Simulation |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | Q000379 |
| mesh[13].descriptor_ui | D007091 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | methods |
| mesh[13].descriptor_name | Image Processing, Computer-Assisted |
| mesh[14].qualifier_ui | Q000379 |
| mesh[14].descriptor_ui | D008279 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | methods |
| mesh[14].descriptor_name | Magnetic Resonance Imaging |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D019047 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Phantoms, Imaging |
| type | article |
| title | Accelerated and motion‐robust in vivo |
| biblio.issue | 3 |
| biblio.volume | 75 |
| biblio.last_page | 1354 |
| biblio.first_page | 1346 |
| topics[0].id | https://openalex.org/T10378 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Advanced MRI Techniques and Applications |
| topics[1].id | https://openalex.org/T11809 |
| topics[1].field.id | https://openalex.org/fields/16 |
| topics[1].field.display_name | Chemistry |
| topics[1].score | 0.9994000196456909 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1607 |
| topics[1].subfield.display_name | Spectroscopy |
| topics[1].display_name | Advanced NMR Techniques and Applications |
| topics[2].id | https://openalex.org/T12603 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9980000257492065 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3106 |
| topics[2].subfield.display_name | Nuclear and High Energy Physics |
| topics[2].display_name | NMR spectroscopy and applications |
| is_xpac | False |
| apc_list.value | 3500 |
| apc_list.currency | USD |
| apc_list.value_usd | 3500 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C104293457 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7641738057136536 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q28324852 |
| concepts[0].display_name | Imaging phantom |
| concepts[1].id | https://openalex.org/C141379421 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6355929374694824 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6094427 |
| concepts[1].display_name | Iterative reconstruction |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5769016742706299 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5474125742912292 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C2779751349 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5037547945976257 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1474480 |
| concepts[4].display_name | Scanner |
| concepts[5].id | https://openalex.org/C124851039 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48374032974243164 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2665459 |
| concepts[5].display_name | Compressed sensing |
| concepts[6].id | https://openalex.org/C2779898584 |
| concepts[6].level | 3 |
| concepts[6].score | 0.44681620597839355 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7820109 |
| concepts[6].display_name | Reconstruction algorithm |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4424450099468231 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.44062861800193787 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C2776029896 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4277493953704834 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3935810 |
| concepts[9].display_name | Relaxation (psychology) |
| concepts[10].id | https://openalex.org/C2779843651 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42197558283805847 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[10].display_name | SIGNAL (programming language) |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.41160136461257935 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C120665830 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2490321695804596 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[12].display_name | Optics |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C15744967 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[14].display_name | Psychology |
| concepts[15].id | https://openalex.org/C77805123 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[15].display_name | Social psychology |
| keywords[0].id | https://openalex.org/keywords/imaging-phantom |
| keywords[0].score | 0.7641738057136536 |
| keywords[0].display_name | Imaging phantom |
| keywords[1].id | https://openalex.org/keywords/iterative-reconstruction |
| keywords[1].score | 0.6355929374694824 |
| keywords[1].display_name | Iterative reconstruction |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5769016742706299 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.5474125742912292 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/scanner |
| keywords[4].score | 0.5037547945976257 |
| keywords[4].display_name | Scanner |
| keywords[5].id | https://openalex.org/keywords/compressed-sensing |
| keywords[5].score | 0.48374032974243164 |
| keywords[5].display_name | Compressed sensing |
| keywords[6].id | https://openalex.org/keywords/reconstruction-algorithm |
| keywords[6].score | 0.44681620597839355 |
| keywords[6].display_name | Reconstruction algorithm |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.4424450099468231 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.44062861800193787 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/relaxation |
| keywords[9].score | 0.4277493953704834 |
| keywords[9].display_name | Relaxation (psychology) |
| keywords[10].id | https://openalex.org/keywords/signal |
| keywords[10].score | 0.42197558283805847 |
| keywords[10].display_name | SIGNAL (programming language) |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.41160136461257935 |
| keywords[11].display_name | Physics |
| keywords[12].id | https://openalex.org/keywords/optics |
| keywords[12].score | 0.2490321695804596 |
| keywords[12].display_name | Optics |
| language | en |
| locations[0].id | doi:10.1002/mrm.25558 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S111160002 |
| locations[0].source.issn | 0740-3194, 1522-2594 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0740-3194 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Magnetic Resonance in Medicine |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25558 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Magnetic Resonance in Medicine |
| locations[0].landing_page_url | https://doi.org/10.1002/mrm.25558 |
| locations[1].id | pmid:25891292 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Magnetic resonance in medicine |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/25891292 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:4609223 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Magn Reson Med |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/4609223 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5055181712 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2944-6412 |
| authorships[0].author.display_name | Noam Ben‐Eliezer |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I57206974 |
| authorships[0].affiliations[0].raw_affiliation_string | The Bernard and Irene Schwartz Center for Biomedical Imaging Department of Radiology New York University School of Medicine New York New York USA |
| authorships[0].institutions[0].id | https://openalex.org/I57206974 |
| authorships[0].institutions[0].ror | https://ror.org/0190ak572 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I57206974 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | New York University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Noam Ben‐Eliezer |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | The Bernard and Irene Schwartz Center for Biomedical Imaging Department of Radiology New York University School of Medicine New York New York USA |
| authorships[1].author.id | https://openalex.org/A5009380657 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2436-4664 |
| authorships[1].author.display_name | Daniel K. Sodickson |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I57206974 |
| authorships[1].affiliations[0].raw_affiliation_string | The Bernard and Irene Schwartz Center for Biomedical Imaging Department of Radiology New York University School of Medicine New York New York USA |
| authorships[1].institutions[0].id | https://openalex.org/I57206974 |
| authorships[1].institutions[0].ror | https://ror.org/0190ak572 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I57206974 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | New York University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Daniel K. Sodickson |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | The Bernard and Irene Schwartz Center for Biomedical Imaging Department of Radiology New York University School of Medicine New York New York USA |
| authorships[2].author.id | https://openalex.org/A5084155345 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0232-1636 |
| authorships[2].author.display_name | Timothy M. Shepherd |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I57206974 |
| authorships[2].affiliations[0].raw_affiliation_string | The Bernard and Irene Schwartz Center for Biomedical Imaging Department of Radiology New York University School of Medicine New York New York USA |
| authorships[2].institutions[0].id | https://openalex.org/I57206974 |
| authorships[2].institutions[0].ror | https://ror.org/0190ak572 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I57206974 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | New York University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Timothy Shepherd |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | The Bernard and Irene Schwartz Center for Biomedical Imaging Department of Radiology New York University School of Medicine New York New York USA |
| authorships[3].author.id | https://openalex.org/A5039322173 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5899-6993 |
| authorships[3].author.display_name | Graham C. Wiggins |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I57206974 |
| authorships[3].affiliations[0].raw_affiliation_string | The Bernard and Irene Schwartz Center for Biomedical Imaging Department of Radiology New York University School of Medicine New York New York USA |
| authorships[3].institutions[0].id | https://openalex.org/I57206974 |
| authorships[3].institutions[0].ror | https://ror.org/0190ak572 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I57206974 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | New York University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Graham C. Wiggins |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | The Bernard and Irene Schwartz Center for Biomedical Imaging Department of Radiology New York University School of Medicine New York New York USA |
| authorships[4].author.id | https://openalex.org/A5015321892 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3426-965X |
| authorships[4].author.display_name | Kai Tobias Block |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I57206974 |
| authorships[4].affiliations[0].raw_affiliation_string | The Bernard and Irene Schwartz Center for Biomedical Imaging Department of Radiology New York University School of Medicine New York New York USA |
| authorships[4].institutions[0].id | https://openalex.org/I57206974 |
| authorships[4].institutions[0].ror | https://ror.org/0190ak572 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I57206974 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | New York University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Kai Tobias Block |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | The Bernard and Irene Schwartz Center for Biomedical Imaging Department of Radiology New York University School of Medicine New York New York USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25558 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2016-06-24T00:00:00 |
| display_name | Accelerated and motion‐robust in vivo |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10378 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Advanced MRI Techniques and Applications |
| related_works | https://openalex.org/W2896778670, https://openalex.org/W4285251805, https://openalex.org/W3104324607, https://openalex.org/W2091971222, https://openalex.org/W3205778756, https://openalex.org/W2144778520, https://openalex.org/W1485082952, https://openalex.org/W2308961925, https://openalex.org/W2077694017, https://openalex.org/W2753113106 |
| cited_by_count | 51 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 6 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 6 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 7 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 8 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 4 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 4 |
| counts_by_year[8].year | 2017 |
| counts_by_year[8].cited_by_count | 8 |
| counts_by_year[9].year | 2016 |
| counts_by_year[9].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1002/mrm.25558 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S111160002 |
| best_oa_location.source.issn | 0740-3194, 1522-2594 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0740-3194 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Magnetic Resonance in Medicine |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25558 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Magnetic Resonance in Medicine |
| best_oa_location.landing_page_url | https://doi.org/10.1002/mrm.25558 |
| primary_location.id | doi:10.1002/mrm.25558 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S111160002 |
| primary_location.source.issn | 0740-3194, 1522-2594 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0740-3194 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Magnetic Resonance in Medicine |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25558 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Magnetic Resonance in Medicine |
| primary_location.landing_page_url | https://doi.org/10.1002/mrm.25558 |
| publication_date | 2015-04-17 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W2065882068, https://openalex.org/W1880697212, https://openalex.org/W2006128636, https://openalex.org/W2164518950, https://openalex.org/W4231917873, https://openalex.org/W2164191119, https://openalex.org/W2064181861, https://openalex.org/W2165568107, https://openalex.org/W111599621, https://openalex.org/W2091719438, https://openalex.org/W2075358160, https://openalex.org/W2144288697, https://openalex.org/W2097522630, https://openalex.org/W1982514338, https://openalex.org/W2041851427, https://openalex.org/W2117546700, https://openalex.org/W2146762154, https://openalex.org/W2054335197, https://openalex.org/W1548804022, https://openalex.org/W1996794130, https://openalex.org/W2074744745, https://openalex.org/W1965957155, https://openalex.org/W2060795193, https://openalex.org/W2086242446, https://openalex.org/W4235852239, https://openalex.org/W2097059008, https://openalex.org/W2037022584, https://openalex.org/W2145020729, https://openalex.org/W2018215034, https://openalex.org/W2135730039, https://openalex.org/W2022514814, https://openalex.org/W2136247797, https://openalex.org/W2080022313, https://openalex.org/W1975700578, https://openalex.org/W2021054290, https://openalex.org/W2038551077, https://openalex.org/W2141641618, https://openalex.org/W3106540953 |
| referenced_works_count | 38 |
| abstract_inverted_index.2 | 9, 97, 103, 152 |
| abstract_inverted_index.3 | 40 |
| abstract_inverted_index.T | 96, 102, 151 |
| abstract_inverted_index.a | 3, 62, 119, 156 |
| abstract_inverted_index.(T | 8 |
| abstract_inverted_index.In | 50 |
| abstract_inverted_index.an | 89 |
| abstract_inverted_index.as | 184, 186 |
| abstract_inverted_index.at | 14, 39 |
| abstract_inverted_index.by | 18, 118 |
| abstract_inverted_index.in | 37, 78, 108, 133, 155, 174 |
| abstract_inverted_index.of | 2, 23, 72, 105, 150, 160, 167, 177 |
| abstract_inverted_index.on | 34, 69 |
| abstract_inverted_index.to | 52, 180, 191, 195 |
| abstract_inverted_index.© | 206 |
| abstract_inverted_index.MSE | 43, 60, 144 |
| abstract_inverted_index.Med | 203 |
| abstract_inverted_index.The | 142, 165 |
| abstract_inverted_index.and | 36, 98, 107, 162 |
| abstract_inverted_index.for | 129 |
| abstract_inverted_index.its | 192 |
| abstract_inverted_index.the | 54, 73, 79, 130, 136, 175 |
| abstract_inverted_index.use | 166 |
| abstract_inverted_index.was | 32, 66, 85, 126 |
| abstract_inverted_index.2015 | 207 |
| abstract_inverted_index.Data | 31 |
| abstract_inverted_index.Inc. | 210 |
| abstract_inverted_index.Magn | 201 |
| abstract_inverted_index.This | 82 |
| abstract_inverted_index.also | 127 |
| abstract_inverted_index.cord | 132 |
| abstract_inverted_index.form | 176 |
| abstract_inverted_index.free | 159 |
| abstract_inverted_index.high | 178 |
| abstract_inverted_index.into | 88 |
| abstract_inverted_index.maps | 104 |
| abstract_inverted_index.spin | 56 |
| abstract_inverted_index.that | 12 |
| abstract_inverted_index.time | 7 |
| abstract_inverted_index.used | 77 |
| abstract_inverted_index.vivo | 38, 109 |
| abstract_inverted_index.well | 185 |
| abstract_inverted_index.were | 111 |
| abstract_inverted_index.with | 59 |
| abstract_inverted_index.(MSE) | 28 |
| abstract_inverted_index.2016. | 205 |
| abstract_inverted_index.Bloch | 70 |
| abstract_inverted_index.Reson | 202 |
| abstract_inverted_index.Tesla | 41 |
| abstract_inverted_index.Wiley | 208 |
| abstract_inverted_index.based | 68 |
| abstract_inverted_index.brain | 110 |
| abstract_inverted_index.image | 21, 92 |
| abstract_inverted_index.maps. | 100 |
| abstract_inverted_index.model | 65, 84 |
| abstract_inverted_index.multi | 26 |
| abstract_inverted_index.order | 51 |
| abstract_inverted_index.owing | 190 |
| abstract_inverted_index.scan. | 123 |
| abstract_inverted_index.using | 42 |
| abstract_inverted_index.vivo, | 134 |
| abstract_inverted_index.actual | 74 |
| abstract_inverted_index.matter | 139 |
| abstract_inverted_index.offers | 147 |
| abstract_inverted_index.radial | 46, 168 |
| abstract_inverted_index.scheme | 76 |
| abstract_inverted_index.signal | 64, 83 |
| abstract_inverted_index.single | 120 |
| abstract_inverted_index.spinal | 131 |
| abstract_inverted_index.values | 116, 154 |
| abstract_inverted_index.Methods | 30 |
| abstract_inverted_index.Purpose | 0 |
| abstract_inverted_index.Results | 101 |
| abstract_inverted_index.ability | 194 |
| abstract_inverted_index.closely | 114 |
| abstract_inverted_index.further | 172 |
| abstract_inverted_index.limited | 198 |
| abstract_inverted_index.mapping | 125, 149 |
| abstract_inverted_index.motion, | 183 |
| abstract_inverted_index.perform | 196 |
| abstract_inverted_index.phantom | 35, 106 |
| abstract_inverted_index.spatial | 188 |
| abstract_inverted_index.user‐ | 161 |
| abstract_inverted_index.acquired | 33 |
| abstract_inverted_index.advanced | 20 |
| abstract_inverted_index.enhanced | 187 |
| abstract_inverted_index.feasible | 16 |
| abstract_inverted_index.imaging. | 200 |
| abstract_inverted_index.immunity | 179 |
| abstract_inverted_index.inherent | 193 |
| abstract_inverted_index.matching | 115 |
| abstract_inverted_index.operates | 13 |
| abstract_inverted_index.overcome | 53 |
| abstract_inverted_index.platform | 11 |
| abstract_inverted_index.process, | 94 |
| abstract_inverted_index.process. | 81 |
| abstract_inverted_index.produced | 117 |
| abstract_inverted_index.provides | 171 |
| abstract_inverted_index.radially | 24 |
| abstract_inverted_index.reliable | 148 |
| abstract_inverted_index.sampling | 48, 170 |
| abstract_inverted_index.datasets. | 29 |
| abstract_inverted_index.employing | 19, 45 |
| abstract_inverted_index.evolution | 57 |
| abstract_inverted_index.framework | 146 |
| abstract_inverted_index.irregular | 181 |
| abstract_inverted_index.iterative | 90 |
| abstract_inverted_index.k‐space | 47, 169 |
| abstract_inverted_index.numerical | 63 |
| abstract_inverted_index.performed | 128 |
| abstract_inverted_index.presented | 143 |
| abstract_inverted_index.producing | 95 |
| abstract_inverted_index.protocols | 44 |
| abstract_inverted_index.reference | 122 |
| abstract_inverted_index.Conclusion | 141 |
| abstract_inverted_index.advantages | 173 |
| abstract_inverted_index.associated | 58 |
| abstract_inverted_index.clinically | 15 |
| abstract_inverted_index.gray/white | 138 |
| abstract_inverted_index.nontrivial | 55 |
| abstract_inverted_index.protocols, | 61 |
| abstract_inverted_index.relaxation | 6, 153 |
| abstract_inverted_index.timescale, | 158 |
| abstract_inverted_index.timescales | 17 |
| abstract_inverted_index.transverse | 5 |
| abstract_inverted_index.underlying | 137 |
| abstract_inverted_index.)‐mapping | 10 |
| abstract_inverted_index.Development | 1 |
| abstract_inverted_index.acquisition | 80 |
| abstract_inverted_index.morphology. | 140 |
| abstract_inverted_index.simulations | 71 |
| abstract_inverted_index.spin‐echo | 27, 121 |
| abstract_inverted_index.variations. | 164 |
| abstract_inverted_index.Periodicals, | 209 |
| abstract_inverted_index.alias‐free | 197 |
| abstract_inverted_index.constructed, | 113 |
| abstract_inverted_index.incorporated | 87 |
| abstract_inverted_index.quantitative | 4 |
| abstract_inverted_index.resolutions, | 189 |
| abstract_inverted_index.subsequently | 86 |
| abstract_inverted_index.successfully | 112 |
| abstract_inverted_index.undersampled | 25 |
| abstract_inverted_index.model‐based | 91 |
| abstract_inverted_index.physiological | 182 |
| abstract_inverted_index.precalculated | 67 |
| abstract_inverted_index.trajectories. | 49 |
| abstract_inverted_index.∼5‐minute | 157 |
| abstract_inverted_index.reconstruction | 22, 93 |
| abstract_inverted_index.75:1346–1354, | 204 |
| abstract_inverted_index.differentiating | 135 |
| abstract_inverted_index.proton‐density | 99 |
| abstract_inverted_index.pulse‐sequence | 75 |
| abstract_inverted_index.High‐resolution | 124 |
| abstract_inverted_index.data‐processing | 145 |
| abstract_inverted_index.field‐of‐view | 199 |
| abstract_inverted_index.scanner‐dependent | 163 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.93190457 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |