Accelerated discovery of high-density pyrazole-based energetic materials using machine learning and density functional theory Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1007/s44371-025-00179-y
Pyrazole-based energetic materials are heterocyclic aromatic compounds characterized by unique structural configuration that promotes high energy content per unit mass and crystal density. These desirable properties render them particularly suitable candidates for energetic materials, with potential applications in explosives and propellants. In this study we developed an efficient strategy that integrate data-driven approach with density functional theory to design novel pyrazole-based energetic materials. Using genetic function approximation algorithm, pertinent molecular descriptors were identified and used to build robust Quantitative Structure Property Relationship (QSPR) models for predicting crystalline density of energetic materials. The performance of four machine learning algorithms including: multilinear regression, artificial neural network, support vector machines, and random forest algorithms were evaluated. The results indicate the best predictive performance was afforded by random forest algorithm with Pearson’s correlation coefficient (RTR), Cross-validation coefficient (QCV) and External validation coefficient (QEX) values of 0.9273, 0.7294 and 0.7184 respectively. Using the compound with highest crystalline density in the dataset, novel energetic materials were designed. The crystalline density of the designed compounds was predicted using ML and DFT approach. The values predicted using high level DFT/B3PW91/6-311 g level of theory, ranging from 2.0389–2.3164gcm−3, were found to be closer to experimental values. Electronic structure and quantitative electrostatic potential investigations indicated the designed compounds possessed favorable properties for high performing energetic materials. This integrated approach to in-silico design of energetic materials could accelerate the discovery of high performing energetic materials.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s44371-025-00179-y
- https://link.springer.com/content/pdf/10.1007/s44371-025-00179-y.pdf
- OA Status
- diamond
- Cited By
- 1
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410004370
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410004370Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s44371-025-00179-yDigital Object Identifier
- Title
-
Accelerated discovery of high-density pyrazole-based energetic materials using machine learning and density functional theoryWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-01Full publication date if available
- Authors
-
Muhammad Tukur Ibrahim, Muktar Musa Ibrahim, Adamu Uzairu, Gideon Adamu Shallangwa, Sani UbaList of authors in order
- Landing page
-
https://doi.org/10.1007/s44371-025-00179-yPublisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s44371-025-00179-y.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s44371-025-00179-y.pdfDirect OA link when available
- Concepts
-
Density functional theory, Computer science, Materials science, Biological system, Chemistry, Computational chemistry, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410004370 |
|---|---|
| doi | https://doi.org/10.1007/s44371-025-00179-y |
| ids.doi | https://doi.org/10.1007/s44371-025-00179-y |
| ids.openalex | https://openalex.org/W4410004370 |
| fwci | 2.76129652 |
| type | article |
| title | Accelerated discovery of high-density pyrazole-based energetic materials using machine learning and density functional theory |
| biblio.issue | 1 |
| biblio.volume | 2 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10806 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2211 |
| topics[0].subfield.display_name | Mechanics of Materials |
| topics[0].display_name | Energetic Materials and Combustion |
| topics[1].id | https://openalex.org/T10211 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9980000257492065 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Computational Drug Discovery Methods |
| topics[2].id | https://openalex.org/T12358 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.9958999752998352 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2505 |
| topics[2].subfield.display_name | Materials Chemistry |
| topics[2].display_name | Thermal and Kinetic Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C152365726 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7562167644500732 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1048589 |
| concepts[0].display_name | Density functional theory |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.35767510533332825 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C192562407 |
| concepts[2].level | 0 |
| concepts[2].score | 0.345445454120636 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[2].display_name | Materials science |
| concepts[3].id | https://openalex.org/C186060115 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3279784917831421 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q30336093 |
| concepts[3].display_name | Biological system |
| concepts[4].id | https://openalex.org/C185592680 |
| concepts[4].level | 0 |
| concepts[4].score | 0.30488502979278564 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[4].display_name | Chemistry |
| concepts[5].id | https://openalex.org/C147597530 |
| concepts[5].level | 1 |
| concepts[5].score | 0.1970575451850891 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q369472 |
| concepts[5].display_name | Computational chemistry |
| concepts[6].id | https://openalex.org/C86803240 |
| concepts[6].level | 0 |
| concepts[6].score | 0.15941119194030762 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[6].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/density-functional-theory |
| keywords[0].score | 0.7562167644500732 |
| keywords[0].display_name | Density functional theory |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.35767510533332825 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/materials-science |
| keywords[2].score | 0.345445454120636 |
| keywords[2].display_name | Materials science |
| keywords[3].id | https://openalex.org/keywords/biological-system |
| keywords[3].score | 0.3279784917831421 |
| keywords[3].display_name | Biological system |
| keywords[4].id | https://openalex.org/keywords/chemistry |
| keywords[4].score | 0.30488502979278564 |
| keywords[4].display_name | Chemistry |
| keywords[5].id | https://openalex.org/keywords/computational-chemistry |
| keywords[5].score | 0.1970575451850891 |
| keywords[5].display_name | Computational chemistry |
| keywords[6].id | https://openalex.org/keywords/biology |
| keywords[6].score | 0.15941119194030762 |
| keywords[6].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1007/s44371-025-00179-y |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4404664029 |
| locations[0].source.issn | 3005-1193 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 3005-1193 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Discover Chemistry. |
| locations[0].source.host_organization | https://openalex.org/P4404664013 |
| locations[0].source.host_organization_name | Springer, Singapore |
| locations[0].source.host_organization_lineage | https://openalex.org/P4404664013 |
| locations[0].source.host_organization_lineage_names | Springer, Singapore |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s44371-025-00179-y.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Discover Chemistry |
| locations[0].landing_page_url | https://doi.org/10.1007/s44371-025-00179-y |
| locations[1].id | pmh:oai:doaj.org/article:adb9b6d5aef64dacb850aa25969ac999 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Discover Chemistry, Vol 2, Iss 1, Pp 1-17 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/adb9b6d5aef64dacb850aa25969ac999 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101973179 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6146-5667 |
| authorships[0].author.display_name | Muhammad Tukur Ibrahim |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Muhammad Tukur Ibrahim |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5007328209 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8250-5074 |
| authorships[1].author.display_name | Muktar Musa Ibrahim |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Muktar Musa Ibrahim |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5017427535 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6973-6361 |
| authorships[2].author.display_name | Adamu Uzairu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Adamu Uzairu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5032573298 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0700-9898 |
| authorships[3].author.display_name | Gideon Adamu Shallangwa |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gideon Adamu Shallangwa |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5111658500 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Sani Uba |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Sani Uba |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s44371-025-00179-y.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Accelerated discovery of high-density pyrazole-based energetic materials using machine learning and density functional theory |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10806 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2211 |
| primary_topic.subfield.display_name | Mechanics of Materials |
| primary_topic.display_name | Energetic Materials and Combustion |
| related_works | https://openalex.org/W4387497383, https://openalex.org/W2948807893, https://openalex.org/W2899084033, https://openalex.org/W2778153218, https://openalex.org/W2748952813, https://openalex.org/W1531601525, https://openalex.org/W4391375266, https://openalex.org/W2078814861, https://openalex.org/W2527526854, https://openalex.org/W1976181487 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1007/s44371-025-00179-y |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4404664029 |
| best_oa_location.source.issn | 3005-1193 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 3005-1193 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Discover Chemistry. |
| best_oa_location.source.host_organization | https://openalex.org/P4404664013 |
| best_oa_location.source.host_organization_name | Springer, Singapore |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4404664013 |
| best_oa_location.source.host_organization_lineage_names | Springer, Singapore |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s44371-025-00179-y.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Discover Chemistry |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s44371-025-00179-y |
| primary_location.id | doi:10.1007/s44371-025-00179-y |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4404664029 |
| primary_location.source.issn | 3005-1193 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 3005-1193 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Discover Chemistry. |
| primary_location.source.host_organization | https://openalex.org/P4404664013 |
| primary_location.source.host_organization_name | Springer, Singapore |
| primary_location.source.host_organization_lineage | https://openalex.org/P4404664013 |
| primary_location.source.host_organization_lineage_names | Springer, Singapore |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s44371-025-00179-y.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Discover Chemistry |
| primary_location.landing_page_url | https://doi.org/10.1007/s44371-025-00179-y |
| publication_date | 2025-05-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3115065729, https://openalex.org/W1970658151, https://openalex.org/W2997480213, https://openalex.org/W2110991312, https://openalex.org/W3137061599, https://openalex.org/W2732643047, https://openalex.org/W3153808125, https://openalex.org/W3186877607, https://openalex.org/W4317884645, https://openalex.org/W3004863177, https://openalex.org/W2794050282, https://openalex.org/W4292411804, https://openalex.org/W6752924412, https://openalex.org/W3045923983, https://openalex.org/W2159887157, https://openalex.org/W2509241278, https://openalex.org/W2091453235, https://openalex.org/W4221077024, https://openalex.org/W4293583613, https://openalex.org/W2730628148, https://openalex.org/W1570448133, https://openalex.org/W2091439890 |
| referenced_works_count | 22 |
| abstract_inverted_index.g | 183 |
| abstract_inverted_index.In | 42 |
| abstract_inverted_index.ML | 172 |
| abstract_inverted_index.an | 47 |
| abstract_inverted_index.be | 193 |
| abstract_inverted_index.by | 9, 123 |
| abstract_inverted_index.in | 38, 154 |
| abstract_inverted_index.of | 89, 94, 141, 165, 185, 223, 230 |
| abstract_inverted_index.to | 58, 76, 192, 195, 220 |
| abstract_inverted_index.we | 45 |
| abstract_inverted_index.DFT | 174 |
| abstract_inverted_index.The | 92, 114, 162, 176 |
| abstract_inverted_index.and | 21, 40, 74, 108, 135, 144, 173, 200 |
| abstract_inverted_index.are | 4 |
| abstract_inverted_index.for | 32, 85, 212 |
| abstract_inverted_index.per | 18 |
| abstract_inverted_index.the | 117, 148, 155, 166, 206, 228 |
| abstract_inverted_index.was | 121, 169 |
| abstract_inverted_index.This | 217 |
| abstract_inverted_index.best | 118 |
| abstract_inverted_index.four | 95 |
| abstract_inverted_index.from | 188 |
| abstract_inverted_index.high | 15, 180, 213, 231 |
| abstract_inverted_index.mass | 20 |
| abstract_inverted_index.that | 13, 50 |
| abstract_inverted_index.them | 28 |
| abstract_inverted_index.this | 43 |
| abstract_inverted_index.unit | 19 |
| abstract_inverted_index.used | 75 |
| abstract_inverted_index.were | 72, 112, 160, 190 |
| abstract_inverted_index.with | 35, 54, 127, 150 |
| abstract_inverted_index.(QCV) | 134 |
| abstract_inverted_index.(QEX) | 139 |
| abstract_inverted_index.These | 24 |
| abstract_inverted_index.Using | 64, 147 |
| abstract_inverted_index.build | 77 |
| abstract_inverted_index.could | 226 |
| abstract_inverted_index.found | 191 |
| abstract_inverted_index.level | 181, 184 |
| abstract_inverted_index.novel | 60, 157 |
| abstract_inverted_index.study | 44 |
| abstract_inverted_index.using | 171, 179 |
| abstract_inverted_index.(QSPR) | 83 |
| abstract_inverted_index.(RTR), | 131 |
| abstract_inverted_index.0.7184 | 145 |
| abstract_inverted_index.0.7294 | 143 |
| abstract_inverted_index.closer | 194 |
| abstract_inverted_index.design | 59, 222 |
| abstract_inverted_index.energy | 16 |
| abstract_inverted_index.forest | 110, 125 |
| abstract_inverted_index.models | 84 |
| abstract_inverted_index.neural | 103 |
| abstract_inverted_index.random | 109, 124 |
| abstract_inverted_index.render | 27 |
| abstract_inverted_index.robust | 78 |
| abstract_inverted_index.theory | 57 |
| abstract_inverted_index.unique | 10 |
| abstract_inverted_index.values | 140, 177 |
| abstract_inverted_index.vector | 106 |
| abstract_inverted_index.0.9273, | 142 |
| abstract_inverted_index.content | 17 |
| abstract_inverted_index.crystal | 22 |
| abstract_inverted_index.density | 55, 88, 153, 164 |
| abstract_inverted_index.genetic | 65 |
| abstract_inverted_index.highest | 151 |
| abstract_inverted_index.machine | 96 |
| abstract_inverted_index.ranging | 187 |
| abstract_inverted_index.results | 115 |
| abstract_inverted_index.support | 105 |
| abstract_inverted_index.theory, | 186 |
| abstract_inverted_index.values. | 197 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.External | 136 |
| abstract_inverted_index.Property | 81 |
| abstract_inverted_index.afforded | 122 |
| abstract_inverted_index.approach | 53, 219 |
| abstract_inverted_index.aromatic | 6 |
| abstract_inverted_index.compound | 149 |
| abstract_inverted_index.dataset, | 156 |
| abstract_inverted_index.density. | 23 |
| abstract_inverted_index.designed | 167, 207 |
| abstract_inverted_index.function | 66 |
| abstract_inverted_index.indicate | 116 |
| abstract_inverted_index.learning | 97 |
| abstract_inverted_index.network, | 104 |
| abstract_inverted_index.promotes | 14 |
| abstract_inverted_index.strategy | 49 |
| abstract_inverted_index.suitable | 30 |
| abstract_inverted_index.Structure | 80 |
| abstract_inverted_index.algorithm | 126 |
| abstract_inverted_index.approach. | 175 |
| abstract_inverted_index.compounds | 7, 168, 208 |
| abstract_inverted_index.designed. | 161 |
| abstract_inverted_index.desirable | 25 |
| abstract_inverted_index.developed | 46 |
| abstract_inverted_index.discovery | 229 |
| abstract_inverted_index.efficient | 48 |
| abstract_inverted_index.energetic | 2, 33, 62, 90, 158, 215, 224, 233 |
| abstract_inverted_index.favorable | 210 |
| abstract_inverted_index.in-silico | 221 |
| abstract_inverted_index.indicated | 205 |
| abstract_inverted_index.integrate | 51 |
| abstract_inverted_index.machines, | 107 |
| abstract_inverted_index.materials | 3, 159, 225 |
| abstract_inverted_index.molecular | 70 |
| abstract_inverted_index.pertinent | 69 |
| abstract_inverted_index.possessed | 209 |
| abstract_inverted_index.potential | 36, 203 |
| abstract_inverted_index.predicted | 170, 178 |
| abstract_inverted_index.structure | 199 |
| abstract_inverted_index.Electronic | 198 |
| abstract_inverted_index.accelerate | 227 |
| abstract_inverted_index.algorithm, | 68 |
| abstract_inverted_index.algorithms | 98, 111 |
| abstract_inverted_index.artificial | 102 |
| abstract_inverted_index.candidates | 31 |
| abstract_inverted_index.evaluated. | 113 |
| abstract_inverted_index.explosives | 39 |
| abstract_inverted_index.functional | 56 |
| abstract_inverted_index.identified | 73 |
| abstract_inverted_index.including: | 99 |
| abstract_inverted_index.integrated | 218 |
| abstract_inverted_index.materials, | 34 |
| abstract_inverted_index.materials. | 63, 91, 216, 234 |
| abstract_inverted_index.performing | 214, 232 |
| abstract_inverted_index.predicting | 86 |
| abstract_inverted_index.predictive | 119 |
| abstract_inverted_index.properties | 26, 211 |
| abstract_inverted_index.structural | 11 |
| abstract_inverted_index.validation | 137 |
| abstract_inverted_index.Pearson’s | 128 |
| abstract_inverted_index.coefficient | 130, 133, 138 |
| abstract_inverted_index.correlation | 129 |
| abstract_inverted_index.crystalline | 87, 152, 163 |
| abstract_inverted_index.data-driven | 52 |
| abstract_inverted_index.descriptors | 71 |
| abstract_inverted_index.multilinear | 100 |
| abstract_inverted_index.performance | 93, 120 |
| abstract_inverted_index.regression, | 101 |
| abstract_inverted_index.Quantitative | 79 |
| abstract_inverted_index.Relationship | 82 |
| abstract_inverted_index.applications | 37 |
| abstract_inverted_index.experimental | 196 |
| abstract_inverted_index.heterocyclic | 5 |
| abstract_inverted_index.particularly | 29 |
| abstract_inverted_index.propellants. | 41 |
| abstract_inverted_index.quantitative | 201 |
| abstract_inverted_index.approximation | 67 |
| abstract_inverted_index.characterized | 8 |
| abstract_inverted_index.configuration | 12 |
| abstract_inverted_index.electrostatic | 202 |
| abstract_inverted_index.respectively. | 146 |
| abstract_inverted_index.Pyrazole-based | 1 |
| abstract_inverted_index.investigations | 204 |
| abstract_inverted_index.pyrazole-based | 61 |
| abstract_inverted_index.Cross-validation | 132 |
| abstract_inverted_index.DFT/B3PW91/6-311 | 182 |
| abstract_inverted_index.2.0389–2.3164gcm−3, | 189 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.7935217 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |