Accelerating Chart Review Using Automated Methods on Electronic Health Record Data for Postoperative Complications. Article Swipe
YOU?
·
· 2016
· Open Access
·
Manual Chart Review (MCR) is an important but labor-intensive task for clinical research and quality improvement. In this study, aiming to accelerate the process of extracting postoperative outcomes from medical charts, we developed an automated postoperative complications detection application by using structured electronic health record (EHR) data. We applied several machine learning methods to the detection of commonly occurring complications, including three subtypes of surgical site infection, pneumonia, urinary tract infection, sepsis, and septic shock. Particularly, we applied one single-task and five multi-task learning methods and compared their detection performance. The models demonstrated high detection performance, which ensures the feasibility of accelerating MCR. Specifically, one of the multi-task learning methods, propensity weighted observations (PWO) demonstrated the highest detection performance, with single-task learning being a close second.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://pubmed.ncbi.nlm.nih.gov/28269941
- OA Status
- green
- Cited By
- 28
- References
- 14
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2620686777
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2620686777Canonical identifier for this work in OpenAlex
- Title
-
Accelerating Chart Review Using Automated Methods on Electronic Health Record Data for Postoperative Complications.Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-01-01Full publication date if available
- Authors
-
Zhen Hu, Genevieve B. Melton, Nathan D Moeller, Elliot G. Arsoniadis, Yan Wang, Mary R. Kwaan, Eric H. Jensen, György SimonList of authors in order
- Landing page
-
https://pubmed.ncbi.nlm.nih.gov/28269941Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/5333220Direct OA link when available
- Concepts
-
Task (project management), Computer science, Chart, Electronic health record, Medical record, Process (computing), Electronic medical record, Septic shock, Health records, Medicine, Machine learning, Sepsis, Artificial intelligence, Medical emergency, Surgery, Health care, Operating system, Engineering, Systems engineering, Economics, Statistics, Economic growth, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
28Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 1, 2022: 6, 2021: 3, 2020: 6Per-year citation counts (last 5 years)
- References (count)
-
14Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2620686777 |
|---|---|
| doi | |
| ids.mag | 2620686777 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/28269941 |
| ids.openalex | https://openalex.org/W2620686777 |
| fwci | 2.81876879 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000465 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Algorithms |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D057286 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Electronic Health Records |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D006801 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Humans |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000069550 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Machine Learning |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D008485 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Medical Audit |
| mesh[5].qualifier_ui | Q000175 |
| mesh[5].descriptor_ui | D011014 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | diagnosis |
| mesh[5].descriptor_name | Pneumonia |
| mesh[6].qualifier_ui | Q000175 |
| mesh[6].descriptor_ui | D011183 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | diagnosis |
| mesh[6].descriptor_name | Postoperative Complications |
| mesh[7].qualifier_ui | Q000175 |
| mesh[7].descriptor_ui | D018805 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | diagnosis |
| mesh[7].descriptor_name | Sepsis |
| mesh[8].qualifier_ui | Q000175 |
| mesh[8].descriptor_ui | D012772 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | diagnosis |
| mesh[8].descriptor_name | Shock, Septic |
| mesh[9].qualifier_ui | Q000175 |
| mesh[9].descriptor_ui | D013530 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | diagnosis |
| mesh[9].descriptor_name | Surgical Wound Infection |
| mesh[10].qualifier_ui | Q000175 |
| mesh[10].descriptor_ui | D014552 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | diagnosis |
| mesh[10].descriptor_name | Urinary Tract Infections |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000465 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Algorithms |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D057286 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Electronic Health Records |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D006801 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Humans |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D000069550 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Machine Learning |
| mesh[15].qualifier_ui | Q000379 |
| mesh[15].descriptor_ui | D008485 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | methods |
| mesh[15].descriptor_name | Medical Audit |
| mesh[16].qualifier_ui | Q000175 |
| mesh[16].descriptor_ui | D011014 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | diagnosis |
| mesh[16].descriptor_name | Pneumonia |
| mesh[17].qualifier_ui | Q000175 |
| mesh[17].descriptor_ui | D011183 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | diagnosis |
| mesh[17].descriptor_name | Postoperative Complications |
| mesh[18].qualifier_ui | Q000175 |
| mesh[18].descriptor_ui | D018805 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | diagnosis |
| mesh[18].descriptor_name | Sepsis |
| mesh[19].qualifier_ui | Q000175 |
| mesh[19].descriptor_ui | D012772 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | diagnosis |
| mesh[19].descriptor_name | Shock, Septic |
| mesh[20].qualifier_ui | Q000175 |
| mesh[20].descriptor_ui | D013530 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | diagnosis |
| mesh[20].descriptor_name | Surgical Wound Infection |
| mesh[21].qualifier_ui | Q000175 |
| mesh[21].descriptor_ui | D014552 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | diagnosis |
| mesh[21].descriptor_name | Urinary Tract Infections |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D000465 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Algorithms |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D057286 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Electronic Health Records |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D006801 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Humans |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D000069550 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Machine Learning |
| mesh[26].qualifier_ui | Q000379 |
| mesh[26].descriptor_ui | D008485 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | methods |
| mesh[26].descriptor_name | Medical Audit |
| mesh[27].qualifier_ui | Q000175 |
| mesh[27].descriptor_ui | D011014 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | diagnosis |
| mesh[27].descriptor_name | Pneumonia |
| mesh[28].qualifier_ui | Q000175 |
| mesh[28].descriptor_ui | D011183 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | diagnosis |
| mesh[28].descriptor_name | Postoperative Complications |
| mesh[29].qualifier_ui | Q000175 |
| mesh[29].descriptor_ui | D018805 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | diagnosis |
| mesh[29].descriptor_name | Sepsis |
| mesh[30].qualifier_ui | Q000175 |
| mesh[30].descriptor_ui | D012772 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | diagnosis |
| mesh[30].descriptor_name | Shock, Septic |
| mesh[31].qualifier_ui | Q000175 |
| mesh[31].descriptor_ui | D013530 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | diagnosis |
| mesh[31].descriptor_name | Surgical Wound Infection |
| mesh[32].qualifier_ui | Q000175 |
| mesh[32].descriptor_ui | D014552 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | diagnosis |
| mesh[32].descriptor_name | Urinary Tract Infections |
| type | article |
| title | Accelerating Chart Review Using Automated Methods on Electronic Health Record Data for Postoperative Complications. |
| biblio.issue | |
| biblio.volume | 2016 |
| biblio.last_page | 1831 |
| biblio.first_page | 1822 |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| topics[1].id | https://openalex.org/T12664 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.975600004196167 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2739 |
| topics[1].subfield.display_name | Public Health, Environmental and Occupational Health |
| topics[1].display_name | Clinical practice guidelines implementation |
| topics[2].id | https://openalex.org/T10350 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.9721999764442444 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3605 |
| topics[2].subfield.display_name | Health Information Management |
| topics[2].display_name | Electronic Health Records Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780451532 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6447719931602478 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[0].display_name | Task (project management) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6038351058959961 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C190812933 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5603999495506287 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q28923 |
| concepts[2].display_name | Chart |
| concepts[3].id | https://openalex.org/C3020144179 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5241394639015198 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10871684 |
| concepts[3].display_name | Electronic health record |
| concepts[4].id | https://openalex.org/C195910791 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4872993230819702 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1324077 |
| concepts[4].display_name | Medical record |
| concepts[5].id | https://openalex.org/C98045186 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46560388803482056 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[5].display_name | Process (computing) |
| concepts[6].id | https://openalex.org/C3018060332 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45866456627845764 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q10871684 |
| concepts[6].display_name | Electronic medical record |
| concepts[7].id | https://openalex.org/C2777628635 |
| concepts[7].level | 3 |
| concepts[7].score | 0.44382429122924805 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1765564 |
| concepts[7].display_name | Septic shock |
| concepts[8].id | https://openalex.org/C3019952477 |
| concepts[8].level | 3 |
| concepts[8].score | 0.411440372467041 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1324077 |
| concepts[8].display_name | Health records |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.40052977204322815 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3987646698951721 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C2778384902 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3850119709968567 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q183134 |
| concepts[11].display_name | Sepsis |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.37478914856910706 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C545542383 |
| concepts[13].level | 1 |
| concepts[13].score | 0.21519789099693298 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2751242 |
| concepts[13].display_name | Medical emergency |
| concepts[14].id | https://openalex.org/C141071460 |
| concepts[14].level | 1 |
| concepts[14].score | 0.1950531303882599 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q40821 |
| concepts[14].display_name | Surgery |
| concepts[15].id | https://openalex.org/C160735492 |
| concepts[15].level | 2 |
| concepts[15].score | 0.17167913913726807 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q31207 |
| concepts[15].display_name | Health care |
| concepts[16].id | https://openalex.org/C111919701 |
| concepts[16].level | 1 |
| concepts[16].score | 0.09003210067749023 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[16].display_name | Operating system |
| concepts[17].id | https://openalex.org/C127413603 |
| concepts[17].level | 0 |
| concepts[17].score | 0.08721107244491577 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[17].display_name | Engineering |
| concepts[18].id | https://openalex.org/C201995342 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0821225643157959 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[18].display_name | Systems engineering |
| concepts[19].id | https://openalex.org/C162324750 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[19].display_name | Economics |
| concepts[20].id | https://openalex.org/C105795698 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[20].display_name | Statistics |
| concepts[21].id | https://openalex.org/C50522688 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[21].display_name | Economic growth |
| concepts[22].id | https://openalex.org/C33923547 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[22].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/task |
| keywords[0].score | 0.6447719931602478 |
| keywords[0].display_name | Task (project management) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6038351058959961 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/chart |
| keywords[2].score | 0.5603999495506287 |
| keywords[2].display_name | Chart |
| keywords[3].id | https://openalex.org/keywords/electronic-health-record |
| keywords[3].score | 0.5241394639015198 |
| keywords[3].display_name | Electronic health record |
| keywords[4].id | https://openalex.org/keywords/medical-record |
| keywords[4].score | 0.4872993230819702 |
| keywords[4].display_name | Medical record |
| keywords[5].id | https://openalex.org/keywords/process |
| keywords[5].score | 0.46560388803482056 |
| keywords[5].display_name | Process (computing) |
| keywords[6].id | https://openalex.org/keywords/electronic-medical-record |
| keywords[6].score | 0.45866456627845764 |
| keywords[6].display_name | Electronic medical record |
| keywords[7].id | https://openalex.org/keywords/septic-shock |
| keywords[7].score | 0.44382429122924805 |
| keywords[7].display_name | Septic shock |
| keywords[8].id | https://openalex.org/keywords/health-records |
| keywords[8].score | 0.411440372467041 |
| keywords[8].display_name | Health records |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.40052977204322815 |
| keywords[9].display_name | Medicine |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.3987646698951721 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/sepsis |
| keywords[11].score | 0.3850119709968567 |
| keywords[11].display_name | Sepsis |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.37478914856910706 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/medical-emergency |
| keywords[13].score | 0.21519789099693298 |
| keywords[13].display_name | Medical emergency |
| keywords[14].id | https://openalex.org/keywords/surgery |
| keywords[14].score | 0.1950531303882599 |
| keywords[14].display_name | Surgery |
| keywords[15].id | https://openalex.org/keywords/health-care |
| keywords[15].score | 0.17167913913726807 |
| keywords[15].display_name | Health care |
| keywords[16].id | https://openalex.org/keywords/operating-system |
| keywords[16].score | 0.09003210067749023 |
| keywords[16].display_name | Operating system |
| keywords[17].id | https://openalex.org/keywords/engineering |
| keywords[17].score | 0.08721107244491577 |
| keywords[17].display_name | Engineering |
| keywords[18].id | https://openalex.org/keywords/systems-engineering |
| keywords[18].score | 0.0821225643157959 |
| keywords[18].display_name | Systems engineering |
| language | en |
| locations[0].id | pmid:28269941 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4306525036 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | PubMed |
| locations[0].source.host_organization | https://openalex.org/I1299303238 |
| locations[0].source.host_organization_name | National Institutes of Health |
| locations[0].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | AMIA ... Annual Symposium proceedings. AMIA Symposium |
| locations[0].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/28269941 |
| locations[1].id | pmh:oai:pubmedcentral.nih.gov:5333220 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S2764455111 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed Central |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | AMIA Annu Symp Proc |
| locations[1].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/5333220 |
| indexed_in | pubmed |
| authorships[0].author.id | https://openalex.org/A5075939769 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1661-515X |
| authorships[0].author.display_name | Zhen Hu |
| authorships[0].countries | CH |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210163477 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute for Health Informatics. |
| authorships[0].institutions[0].id | https://openalex.org/I4210163477 |
| authorships[0].institutions[0].ror | https://ror.org/04e79zk25 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210163477 |
| authorships[0].institutions[0].country_code | CH |
| authorships[0].institutions[0].display_name | Institute for Medical Informatics and Biostatistics |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhen Hu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute for Health Informatics. |
| authorships[1].author.id | https://openalex.org/A5025398350 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5193-1663 |
| authorships[1].author.display_name | Genevieve B. Melton |
| authorships[1].countries | CH |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210163477 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute for Health Informatics; Department of Surgery. |
| authorships[1].institutions[0].id | https://openalex.org/I4210163477 |
| authorships[1].institutions[0].ror | https://ror.org/04e79zk25 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210163477 |
| authorships[1].institutions[0].country_code | CH |
| authorships[1].institutions[0].display_name | Institute for Medical Informatics and Biostatistics |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Genevieve B Melton |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute for Health Informatics; Department of Surgery. |
| authorships[2].author.id | https://openalex.org/A5061059339 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Nathan D Moeller |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering. |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nathan D Moeller |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science and Engineering. |
| authorships[3].author.id | https://openalex.org/A5091032999 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1048-5331 |
| authorships[3].author.display_name | Elliot G. Arsoniadis |
| authorships[3].countries | CH |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210163477 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute for Health Informatics; Department of Surgery. |
| authorships[3].institutions[0].id | https://openalex.org/I4210163477 |
| authorships[3].institutions[0].ror | https://ror.org/04e79zk25 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210163477 |
| authorships[3].institutions[0].country_code | CH |
| authorships[3].institutions[0].display_name | Institute for Medical Informatics and Biostatistics |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Elliot G Arsoniadis |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute for Health Informatics; Department of Surgery. |
| authorships[4].author.id | https://openalex.org/A5100322712 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5344-1884 |
| authorships[4].author.display_name | Yan Wang |
| authorships[4].countries | CH |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210163477 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute for Health Informatics. |
| authorships[4].institutions[0].id | https://openalex.org/I4210163477 |
| authorships[4].institutions[0].ror | https://ror.org/04e79zk25 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210163477 |
| authorships[4].institutions[0].country_code | CH |
| authorships[4].institutions[0].display_name | Institute for Medical Informatics and Biostatistics |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yan Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute for Health Informatics. |
| authorships[5].author.id | https://openalex.org/A5020202387 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Mary R. Kwaan |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Surgery. |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Mary R Kwaan |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Surgery. |
| authorships[6].author.id | https://openalex.org/A5088558334 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8016-757X |
| authorships[6].author.display_name | Eric H. Jensen |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Surgery. |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Eric H Jensen |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Surgery. |
| authorships[7].author.id | https://openalex.org/A5050008389 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-4715-5934 |
| authorships[7].author.display_name | György Simon |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I130238516 |
| authorships[7].affiliations[0].raw_affiliation_string | Institute for Health Informatics; Department of Medicine, University of Minnesota, MN. |
| authorships[7].institutions[0].id | https://openalex.org/I130238516 |
| authorships[7].institutions[0].ror | https://ror.org/017zqws13 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I130238516 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | University of Minnesota |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Gyorgy J Simon |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Institute for Health Informatics; Department of Medicine, University of Minnesota, MN. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/5333220 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Accelerating Chart Review Using Automated Methods on Electronic Health Record Data for Postoperative Complications. |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W142736459, https://openalex.org/W2893631783, https://openalex.org/W2386164369, https://openalex.org/W2287714477, https://openalex.org/W1979668613, https://openalex.org/W2605197695, https://openalex.org/W1517196187, https://openalex.org/W2093991197, https://openalex.org/W426560458, https://openalex.org/W2016347512 |
| cited_by_count | 28 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 6 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 3 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 6 |
| counts_by_year[5].year | 2019 |
| counts_by_year[5].cited_by_count | 6 |
| counts_by_year[6].year | 2018 |
| counts_by_year[6].cited_by_count | 3 |
| counts_by_year[7].year | 2017 |
| counts_by_year[7].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:5333220 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | AMIA Annu Symp Proc |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/5333220 |
| primary_location.id | pmid:28269941 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4306525036 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | PubMed |
| primary_location.source.host_organization | https://openalex.org/I1299303238 |
| primary_location.source.host_organization_name | National Institutes of Health |
| primary_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | AMIA ... Annual Symposium proceedings. AMIA Symposium |
| primary_location.landing_page_url | https://pubmed.ncbi.nlm.nih.gov/28269941 |
| publication_date | 2016-01-01 |
| publication_year | 2016 |
| referenced_works | https://openalex.org/W2184163318, https://openalex.org/W2010078884, https://openalex.org/W2073229762, https://openalex.org/W1968386642, https://openalex.org/W2045444506, https://openalex.org/W1561070017, https://openalex.org/W2155964536, https://openalex.org/W2134256069, https://openalex.org/W2092559098, https://openalex.org/W2014865667, https://openalex.org/W2009790391, https://openalex.org/W2030597870, https://openalex.org/W2201979071, https://openalex.org/W1417620923 |
| referenced_works_count | 14 |
| abstract_inverted_index.a | 123 |
| abstract_inverted_index.In | 16 |
| abstract_inverted_index.We | 47 |
| abstract_inverted_index.an | 5, 33 |
| abstract_inverted_index.by | 39 |
| abstract_inverted_index.is | 4 |
| abstract_inverted_index.of | 24, 56, 63, 100, 105 |
| abstract_inverted_index.to | 20, 53 |
| abstract_inverted_index.we | 31, 76 |
| abstract_inverted_index.The | 90 |
| abstract_inverted_index.and | 13, 72, 80, 85 |
| abstract_inverted_index.but | 7 |
| abstract_inverted_index.for | 10 |
| abstract_inverted_index.one | 78, 104 |
| abstract_inverted_index.the | 22, 54, 98, 106, 115 |
| abstract_inverted_index.MCR. | 102 |
| abstract_inverted_index.five | 81 |
| abstract_inverted_index.from | 28 |
| abstract_inverted_index.high | 93 |
| abstract_inverted_index.site | 65 |
| abstract_inverted_index.task | 9 |
| abstract_inverted_index.this | 17 |
| abstract_inverted_index.with | 119 |
| abstract_inverted_index.(EHR) | 45 |
| abstract_inverted_index.(MCR) | 3 |
| abstract_inverted_index.(PWO) | 113 |
| abstract_inverted_index.Chart | 1 |
| abstract_inverted_index.being | 122 |
| abstract_inverted_index.close | 124 |
| abstract_inverted_index.data. | 46 |
| abstract_inverted_index.their | 87 |
| abstract_inverted_index.three | 61 |
| abstract_inverted_index.tract | 69 |
| abstract_inverted_index.using | 40 |
| abstract_inverted_index.which | 96 |
| abstract_inverted_index.Manual | 0 |
| abstract_inverted_index.Review | 2 |
| abstract_inverted_index.aiming | 19 |
| abstract_inverted_index.health | 43 |
| abstract_inverted_index.models | 91 |
| abstract_inverted_index.record | 44 |
| abstract_inverted_index.septic | 73 |
| abstract_inverted_index.shock. | 74 |
| abstract_inverted_index.study, | 18 |
| abstract_inverted_index.applied | 48, 77 |
| abstract_inverted_index.charts, | 30 |
| abstract_inverted_index.ensures | 97 |
| abstract_inverted_index.highest | 116 |
| abstract_inverted_index.machine | 50 |
| abstract_inverted_index.medical | 29 |
| abstract_inverted_index.methods | 52, 84 |
| abstract_inverted_index.process | 23 |
| abstract_inverted_index.quality | 14 |
| abstract_inverted_index.second. | 125 |
| abstract_inverted_index.sepsis, | 71 |
| abstract_inverted_index.several | 49 |
| abstract_inverted_index.urinary | 68 |
| abstract_inverted_index.clinical | 11 |
| abstract_inverted_index.commonly | 57 |
| abstract_inverted_index.compared | 86 |
| abstract_inverted_index.learning | 51, 83, 108, 121 |
| abstract_inverted_index.methods, | 109 |
| abstract_inverted_index.outcomes | 27 |
| abstract_inverted_index.research | 12 |
| abstract_inverted_index.subtypes | 62 |
| abstract_inverted_index.surgical | 64 |
| abstract_inverted_index.weighted | 111 |
| abstract_inverted_index.automated | 34 |
| abstract_inverted_index.detection | 37, 55, 88, 94, 117 |
| abstract_inverted_index.developed | 32 |
| abstract_inverted_index.important | 6 |
| abstract_inverted_index.including | 60 |
| abstract_inverted_index.occurring | 58 |
| abstract_inverted_index.accelerate | 21 |
| abstract_inverted_index.electronic | 42 |
| abstract_inverted_index.extracting | 25 |
| abstract_inverted_index.infection, | 66, 70 |
| abstract_inverted_index.multi-task | 82, 107 |
| abstract_inverted_index.pneumonia, | 67 |
| abstract_inverted_index.propensity | 110 |
| abstract_inverted_index.structured | 41 |
| abstract_inverted_index.application | 38 |
| abstract_inverted_index.feasibility | 99 |
| abstract_inverted_index.single-task | 79, 120 |
| abstract_inverted_index.accelerating | 101 |
| abstract_inverted_index.demonstrated | 92, 114 |
| abstract_inverted_index.improvement. | 15 |
| abstract_inverted_index.observations | 112 |
| abstract_inverted_index.performance, | 95, 118 |
| abstract_inverted_index.performance. | 89 |
| abstract_inverted_index.Particularly, | 75 |
| abstract_inverted_index.Specifically, | 103 |
| abstract_inverted_index.complications | 36 |
| abstract_inverted_index.postoperative | 26, 35 |
| abstract_inverted_index.complications, | 59 |
| abstract_inverted_index.labor-intensive | 8 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.96034046 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |