Accelerating Metal-Organic Framework Discovery via Synthesisability Prediction: The MFD Evaluation Method for One-Class Classification Models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.26434/chemrxiv-2024-tlmp4
Machine learning has found wide application in the materials field, particularly in discovering structure-property relationships. However, its potential in predicting synthetic accessibility of materials remains relatively unexplored due to the lack of negative data. In this study, we employ several one-class classification (OCC) approaches to accelerate the development of novel metal-organic framework materials by predicting their synthesisability. The evaluation of OCC model performance poses challenges, as traditional evaluation metrics are not applicable when dealing with a single type of data. To overcome this limitation, we introduce a quantitative approach, the Maximum Fractional Difference (MFD) method, to assess and compare model performance, as well as determine optimal thresholds for effectively distinguishing between positives and negatives. A DeepSVDD model with superior predictive capability is proposed. By combining assessment of synthetic viability with porosity prediction models, a list of 3,453 unreported combinations is generated characterised by predictions of high synthesisability and large pore size. The MFD methodology proposed in this study is intended to provide an effective complementary assessment method for addressing the inherent challenges in evaluating OCC models. The research process, developed models, and predicted results of this study are aimed at helping prioritisation of materials for synthesis.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.26434/chemrxiv-2024-tlmp4
- https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/664c7a3c418a5379b0ded343/original/accelerating-metal-organic-framework-discovery-via-synthesisability-prediction-the-mfd-evaluation-method-for-one-class-classification-models.pdf
- OA Status
- gold
- References
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4398218180
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4398218180Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26434/chemrxiv-2024-tlmp4Digital Object Identifier
- Title
-
Accelerating Metal-Organic Framework Discovery via Synthesisability Prediction: The MFD Evaluation Method for One-Class Classification ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-22Full publication date if available
- Authors
-
Chi Zhang, Dmytro Antypov, Matthew J. Rosseinsky, Matthew S. DyerList of authors in order
- Landing page
-
https://doi.org/10.26434/chemrxiv-2024-tlmp4Publisher landing page
- PDF URL
-
https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/664c7a3c418a5379b0ded343/original/accelerating-metal-organic-framework-discovery-via-synthesisability-prediction-the-mfd-evaluation-method-for-one-class-classification-models.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/664c7a3c418a5379b0ded343/original/accelerating-metal-organic-framework-discovery-via-synthesisability-prediction-the-mfd-evaluation-method-for-one-class-classification-models.pdfDirect OA link when available
- Concepts
-
Class (philosophy), Computer science, Artificial intelligence, Machine learning, Mathematics, Data miningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
2Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4398218180 |
|---|---|
| doi | https://doi.org/10.26434/chemrxiv-2024-tlmp4 |
| ids.doi | https://doi.org/10.26434/chemrxiv-2024-tlmp4 |
| ids.openalex | https://openalex.org/W4398218180 |
| fwci | 0.0 |
| type | preprint |
| title | Accelerating Metal-Organic Framework Discovery via Synthesisability Prediction: The MFD Evaluation Method for One-Class Classification Models |
| awards[0].id | https://openalex.org/G7833636506 |
| awards[0].funder_id | https://openalex.org/F4320329991 |
| awards[0].display_name | |
| awards[0].funder_award_id | RC-2015-036 |
| awards[0].funder_display_name | Leverhulme Research Centre for Functional Materials Design |
| awards[1].id | https://openalex.org/G463119390 |
| awards[1].funder_id | https://openalex.org/F4320322725 |
| awards[1].display_name | |
| awards[1].funder_award_id | 202104910051 |
| awards[1].funder_display_name | China Scholarship Council |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10096 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 0.9876000285148621 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1604 |
| topics[0].subfield.display_name | Inorganic Chemistry |
| topics[0].display_name | Metal-Organic Frameworks: Synthesis and Applications |
| topics[1].id | https://openalex.org/T11286 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9355999827384949 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | Polyoxometalates: Synthesis and Applications |
| topics[2].id | https://openalex.org/T11948 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.9139999747276306 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2505 |
| topics[2].subfield.display_name | Materials Chemistry |
| topics[2].display_name | Machine Learning in Materials Science |
| funders[0].id | https://openalex.org/F4320322725 |
| funders[0].ror | https://ror.org/04atp4p48 |
| funders[0].display_name | China Scholarship Council |
| funders[1].id | https://openalex.org/F4320329991 |
| funders[1].ror | |
| funders[1].display_name | Leverhulme Research Centre for Functional Materials Design |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777212361 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7580496072769165 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[0].display_name | Class (philosophy) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4212878942489624 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4152139723300934 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3499637246131897 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3330721855163574 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3278498649597168 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| keywords[0].id | https://openalex.org/keywords/class |
| keywords[0].score | 0.7580496072769165 |
| keywords[0].display_name | Class (philosophy) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4212878942489624 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.4152139723300934 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.3499637246131897 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.3330721855163574 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.3278498649597168 |
| keywords[5].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.26434/chemrxiv-2024-tlmp4 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/664c7a3c418a5379b0ded343/original/accelerating-metal-organic-framework-discovery-via-synthesisability-prediction-the-mfd-evaluation-method-for-one-class-classification-models.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.26434/chemrxiv-2024-tlmp4 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5079335583 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3823-7794 |
| authorships[0].author.display_name | Chi Zhang |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I146655781 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Liverpool |
| authorships[0].institutions[0].id | https://openalex.org/I146655781 |
| authorships[0].institutions[0].ror | https://ror.org/04xs57h96 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I146655781 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Liverpool |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chi Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Liverpool |
| authorships[1].author.id | https://openalex.org/A5062223660 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1893-7785 |
| authorships[1].author.display_name | Dmytro Antypov |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I146655781 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Liverpool |
| authorships[1].institutions[0].id | https://openalex.org/I146655781 |
| authorships[1].institutions[0].ror | https://ror.org/04xs57h96 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I146655781 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Liverpool |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dmytro Antypov |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Liverpool |
| authorships[2].author.id | https://openalex.org/A5054755054 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1910-2483 |
| authorships[2].author.display_name | Matthew J. Rosseinsky |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I146655781 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Liverpool |
| authorships[2].institutions[0].id | https://openalex.org/I146655781 |
| authorships[2].institutions[0].ror | https://ror.org/04xs57h96 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I146655781 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of Liverpool |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Matthew J Rosseinsky |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Liverpool |
| authorships[3].author.id | https://openalex.org/A5091597124 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4923-3003 |
| authorships[3].author.display_name | Matthew S. Dyer |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I146655781 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Liverpool |
| authorships[3].institutions[0].id | https://openalex.org/I146655781 |
| authorships[3].institutions[0].ror | https://ror.org/04xs57h96 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I146655781 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | University of Liverpool |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Matthew Stephen Dyer |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Liverpool |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/664c7a3c418a5379b0ded343/original/accelerating-metal-organic-framework-discovery-via-synthesisability-prediction-the-mfd-evaluation-method-for-one-class-classification-models.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Accelerating Metal-Organic Framework Discovery via Synthesisability Prediction: The MFD Evaluation Method for One-Class Classification Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10096 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 0.9876000285148621 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1604 |
| primary_topic.subfield.display_name | Inorganic Chemistry |
| primary_topic.display_name | Metal-Organic Frameworks: Synthesis and Applications |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.26434/chemrxiv-2024-tlmp4 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/664c7a3c418a5379b0ded343/original/accelerating-metal-organic-framework-discovery-via-synthesisability-prediction-the-mfd-evaluation-method-for-one-class-classification-models.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.26434/chemrxiv-2024-tlmp4 |
| primary_location.id | doi:10.26434/chemrxiv-2024-tlmp4 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/664c7a3c418a5379b0ded343/original/accelerating-metal-organic-framework-discovery-via-synthesisability-prediction-the-mfd-evaluation-method-for-one-class-classification-models.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.26434/chemrxiv-2024-tlmp4 |
| publication_date | 2024-05-22 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W1583837637, https://openalex.org/W4244070247 |
| referenced_works_count | 2 |
| abstract_inverted_index.A | 114 |
| abstract_inverted_index.a | 75, 86, 133 |
| abstract_inverted_index.By | 123 |
| abstract_inverted_index.In | 34 |
| abstract_inverted_index.To | 80 |
| abstract_inverted_index.an | 162 |
| abstract_inverted_index.as | 65, 101, 103 |
| abstract_inverted_index.at | 189 |
| abstract_inverted_index.by | 53, 142 |
| abstract_inverted_index.in | 6, 11, 18, 155, 172 |
| abstract_inverted_index.is | 121, 139, 158 |
| abstract_inverted_index.of | 22, 31, 48, 59, 78, 126, 135, 144, 184, 192 |
| abstract_inverted_index.to | 28, 44, 95, 160 |
| abstract_inverted_index.we | 37, 84 |
| abstract_inverted_index.MFD | 152 |
| abstract_inverted_index.OCC | 60, 174 |
| abstract_inverted_index.The | 57, 151, 176 |
| abstract_inverted_index.and | 97, 112, 147, 181 |
| abstract_inverted_index.are | 69, 187 |
| abstract_inverted_index.due | 27 |
| abstract_inverted_index.for | 107, 167, 194 |
| abstract_inverted_index.has | 2 |
| abstract_inverted_index.its | 16 |
| abstract_inverted_index.not | 70 |
| abstract_inverted_index.the | 7, 29, 46, 89, 169 |
| abstract_inverted_index.high | 145 |
| abstract_inverted_index.lack | 30 |
| abstract_inverted_index.list | 134 |
| abstract_inverted_index.pore | 149 |
| abstract_inverted_index.this | 35, 82, 156, 185 |
| abstract_inverted_index.type | 77 |
| abstract_inverted_index.well | 102 |
| abstract_inverted_index.when | 72 |
| abstract_inverted_index.wide | 4 |
| abstract_inverted_index.with | 74, 117, 129 |
| abstract_inverted_index.(MFD) | 93 |
| abstract_inverted_index.(OCC) | 42 |
| abstract_inverted_index.3,453 | 136 |
| abstract_inverted_index.aimed | 188 |
| abstract_inverted_index.data. | 33, 79 |
| abstract_inverted_index.found | 3 |
| abstract_inverted_index.large | 148 |
| abstract_inverted_index.model | 61, 99, 116 |
| abstract_inverted_index.novel | 49 |
| abstract_inverted_index.poses | 63 |
| abstract_inverted_index.size. | 150 |
| abstract_inverted_index.study | 157, 186 |
| abstract_inverted_index.their | 55 |
| abstract_inverted_index.assess | 96 |
| abstract_inverted_index.employ | 38 |
| abstract_inverted_index.field, | 9 |
| abstract_inverted_index.method | 166 |
| abstract_inverted_index.single | 76 |
| abstract_inverted_index.study, | 36 |
| abstract_inverted_index.Machine | 0 |
| abstract_inverted_index.Maximum | 90 |
| abstract_inverted_index.between | 110 |
| abstract_inverted_index.compare | 98 |
| abstract_inverted_index.dealing | 73 |
| abstract_inverted_index.helping | 190 |
| abstract_inverted_index.method, | 94 |
| abstract_inverted_index.metrics | 68 |
| abstract_inverted_index.models, | 132, 180 |
| abstract_inverted_index.models. | 175 |
| abstract_inverted_index.optimal | 105 |
| abstract_inverted_index.provide | 161 |
| abstract_inverted_index.remains | 24 |
| abstract_inverted_index.results | 183 |
| abstract_inverted_index.several | 39 |
| abstract_inverted_index.DeepSVDD | 115 |
| abstract_inverted_index.However, | 15 |
| abstract_inverted_index.inherent | 170 |
| abstract_inverted_index.intended | 159 |
| abstract_inverted_index.learning | 1 |
| abstract_inverted_index.negative | 32 |
| abstract_inverted_index.overcome | 81 |
| abstract_inverted_index.porosity | 130 |
| abstract_inverted_index.process, | 178 |
| abstract_inverted_index.proposed | 154 |
| abstract_inverted_index.research | 177 |
| abstract_inverted_index.superior | 118 |
| abstract_inverted_index.approach, | 88 |
| abstract_inverted_index.combining | 124 |
| abstract_inverted_index.determine | 104 |
| abstract_inverted_index.developed | 179 |
| abstract_inverted_index.effective | 163 |
| abstract_inverted_index.framework | 51 |
| abstract_inverted_index.generated | 140 |
| abstract_inverted_index.introduce | 85 |
| abstract_inverted_index.materials | 8, 23, 52, 193 |
| abstract_inverted_index.one-class | 40 |
| abstract_inverted_index.positives | 111 |
| abstract_inverted_index.potential | 17 |
| abstract_inverted_index.predicted | 182 |
| abstract_inverted_index.proposed. | 122 |
| abstract_inverted_index.synthetic | 20, 127 |
| abstract_inverted_index.viability | 128 |
| abstract_inverted_index.Difference | 92 |
| abstract_inverted_index.Fractional | 91 |
| abstract_inverted_index.accelerate | 45 |
| abstract_inverted_index.addressing | 168 |
| abstract_inverted_index.applicable | 71 |
| abstract_inverted_index.approaches | 43 |
| abstract_inverted_index.assessment | 125, 165 |
| abstract_inverted_index.capability | 120 |
| abstract_inverted_index.challenges | 171 |
| abstract_inverted_index.evaluating | 173 |
| abstract_inverted_index.evaluation | 58, 67 |
| abstract_inverted_index.negatives. | 113 |
| abstract_inverted_index.predicting | 19, 54 |
| abstract_inverted_index.prediction | 131 |
| abstract_inverted_index.predictive | 119 |
| abstract_inverted_index.relatively | 25 |
| abstract_inverted_index.synthesis. | 195 |
| abstract_inverted_index.thresholds | 106 |
| abstract_inverted_index.unexplored | 26 |
| abstract_inverted_index.unreported | 137 |
| abstract_inverted_index.application | 5 |
| abstract_inverted_index.challenges, | 64 |
| abstract_inverted_index.development | 47 |
| abstract_inverted_index.discovering | 12 |
| abstract_inverted_index.effectively | 108 |
| abstract_inverted_index.limitation, | 83 |
| abstract_inverted_index.methodology | 153 |
| abstract_inverted_index.performance | 62 |
| abstract_inverted_index.predictions | 143 |
| abstract_inverted_index.traditional | 66 |
| abstract_inverted_index.combinations | 138 |
| abstract_inverted_index.particularly | 10 |
| abstract_inverted_index.performance, | 100 |
| abstract_inverted_index.quantitative | 87 |
| abstract_inverted_index.accessibility | 21 |
| abstract_inverted_index.characterised | 141 |
| abstract_inverted_index.complementary | 164 |
| abstract_inverted_index.metal-organic | 50 |
| abstract_inverted_index.classification | 41 |
| abstract_inverted_index.distinguishing | 109 |
| abstract_inverted_index.prioritisation | 191 |
| abstract_inverted_index.relationships. | 14 |
| abstract_inverted_index.synthesisability | 146 |
| abstract_inverted_index.synthesisability. | 56 |
| abstract_inverted_index.structure-property | 13 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.07665219 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |