Accelerating SNN Training with Stochastic Parallelizable Spiking Neurons Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2306.12666
Spiking neural networks (SNN) are able to learn spatiotemporal features while using less energy, especially on neuromorphic hardware. The most widely used spiking neuron in deep learning is the Leaky Integrate and Fire (LIF) neuron. LIF neurons operate sequentially, however, since the computation of state at time t relies on the state at time t-1 being computed. This limitation is shared with Recurrent Neural Networks (RNN) and results in slow training on Graphics Processing Units (GPU). In this paper, we propose the Stochastic Parallelizable Spiking Neuron (SPSN) to overcome the sequential training limitation of LIF neurons. By separating the linear integration component from the non-linear spiking function, SPSN can be run in parallel over time. The proposed approach results in performance comparable with the state-of-the-art for feedforward neural networks on the Spiking Heidelberg Digits (SHD) dataset, outperforming LIF networks while training 10 times faster and outperforming non-spiking networks with the same network architecture. For longer input sequences of 10000 time-steps, we show that the proposed approach results in 4000 times faster training, thus demonstrating the potential of the proposed approach to accelerate SNN training for very large datasets.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2306.12666
- https://arxiv.org/pdf/2306.12666
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4381827072
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4381827072Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2306.12666Digital Object Identifier
- Title
-
Accelerating SNN Training with Stochastic Parallelizable Spiking NeuronsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-22Full publication date if available
- Authors
-
Sidi Yaya Arnaud Yarga, Sean U. N. WoodList of authors in order
- Landing page
-
https://arxiv.org/abs/2306.12666Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2306.12666Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2306.12666Direct OA link when available
- Concepts
-
Spiking neural network, Parallelizable manifold, Computer science, Neuromorphic engineering, Artificial intelligence, Artificial neural network, Graphics, Feed forward, Algorithm, Computer graphics (images), Engineering, Control engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4381827072 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2306.12666 |
| ids.doi | https://doi.org/10.48550/arxiv.2306.12666 |
| ids.openalex | https://openalex.org/W4381827072 |
| fwci | 0.1658839 |
| type | preprint |
| title | Accelerating SNN Training with Stochastic Parallelizable Spiking Neurons |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10502 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Advanced Memory and Neural Computing |
| topics[1].id | https://openalex.org/T12808 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9878000020980835 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Ferroelectric and Negative Capacitance Devices |
| topics[2].id | https://openalex.org/T12611 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9850999712944031 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Reservoir Computing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C11731999 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8535778522491455 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q9067355 |
| concepts[0].display_name | Spiking neural network |
| concepts[1].id | https://openalex.org/C148047603 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7761402726173401 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1014612 |
| concepts[1].display_name | Parallelizable manifold |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7720081806182861 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C151927369 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6572607159614563 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1981312 |
| concepts[3].display_name | Neuromorphic engineering |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.48069125413894653 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47322216629981995 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C21442007 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43392571806907654 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1027879 |
| concepts[6].display_name | Graphics |
| concepts[7].id | https://openalex.org/C38858127 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42291679978370667 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5441228 |
| concepts[7].display_name | Feed forward |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.22771966457366943 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C121684516 |
| concepts[9].level | 1 |
| concepts[9].score | 0.10385355353355408 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[9].display_name | Computer graphics (images) |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C133731056 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q4917288 |
| concepts[11].display_name | Control engineering |
| keywords[0].id | https://openalex.org/keywords/spiking-neural-network |
| keywords[0].score | 0.8535778522491455 |
| keywords[0].display_name | Spiking neural network |
| keywords[1].id | https://openalex.org/keywords/parallelizable-manifold |
| keywords[1].score | 0.7761402726173401 |
| keywords[1].display_name | Parallelizable manifold |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7720081806182861 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/neuromorphic-engineering |
| keywords[3].score | 0.6572607159614563 |
| keywords[3].display_name | Neuromorphic engineering |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.48069125413894653 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.47322216629981995 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/graphics |
| keywords[6].score | 0.43392571806907654 |
| keywords[6].display_name | Graphics |
| keywords[7].id | https://openalex.org/keywords/feed-forward |
| keywords[7].score | 0.42291679978370667 |
| keywords[7].display_name | Feed forward |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.22771966457366943 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/computer-graphics |
| keywords[9].score | 0.10385355353355408 |
| keywords[9].display_name | Computer graphics (images) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2306.12666 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2306.12666 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2306.12666 |
| locations[1].id | doi:10.48550/arxiv.2306.12666 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2306.12666 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5086006042 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4727-6437 |
| authorships[0].author.display_name | Sidi Yaya Arnaud Yarga |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yarga, Sidi Yaya Arnaud |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5016964600 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6821-1619 |
| authorships[1].author.display_name | Sean U. N. Wood |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Wood, Sean U. N. |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2306.12666 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Accelerating SNN Training with Stochastic Parallelizable Spiking Neurons |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10502 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Advanced Memory and Neural Computing |
| related_works | https://openalex.org/W3089892344, https://openalex.org/W4386227293, https://openalex.org/W4313442939, https://openalex.org/W4372267706, https://openalex.org/W2885510266, https://openalex.org/W4288055417, https://openalex.org/W2960220682, https://openalex.org/W4205804651, https://openalex.org/W4287758233, https://openalex.org/W3136467750 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2306.12666 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2306.12666 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2306.12666 |
| primary_location.id | pmh:oai:arXiv.org:2306.12666 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2306.12666 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2306.12666 |
| publication_date | 2023-06-22 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.t | 47 |
| abstract_inverted_index.10 | 141 |
| abstract_inverted_index.By | 96 |
| abstract_inverted_index.In | 76 |
| abstract_inverted_index.at | 45, 52 |
| abstract_inverted_index.be | 109 |
| abstract_inverted_index.in | 24, 68, 111, 119, 167 |
| abstract_inverted_index.is | 27, 59 |
| abstract_inverted_index.of | 43, 93, 157, 176 |
| abstract_inverted_index.on | 15, 49, 71, 129 |
| abstract_inverted_index.to | 6, 87, 180 |
| abstract_inverted_index.we | 79, 160 |
| abstract_inverted_index.For | 153 |
| abstract_inverted_index.LIF | 35, 94, 137 |
| abstract_inverted_index.SNN | 182 |
| abstract_inverted_index.The | 18, 115 |
| abstract_inverted_index.and | 31, 66, 144 |
| abstract_inverted_index.are | 4 |
| abstract_inverted_index.can | 108 |
| abstract_inverted_index.for | 125, 184 |
| abstract_inverted_index.run | 110 |
| abstract_inverted_index.t-1 | 54 |
| abstract_inverted_index.the | 28, 41, 50, 81, 89, 98, 103, 123, 130, 149, 163, 174, 177 |
| abstract_inverted_index.4000 | 168 |
| abstract_inverted_index.Fire | 32 |
| abstract_inverted_index.SPSN | 107 |
| abstract_inverted_index.This | 57 |
| abstract_inverted_index.able | 5 |
| abstract_inverted_index.deep | 25 |
| abstract_inverted_index.from | 102 |
| abstract_inverted_index.less | 12 |
| abstract_inverted_index.most | 19 |
| abstract_inverted_index.over | 113 |
| abstract_inverted_index.same | 150 |
| abstract_inverted_index.show | 161 |
| abstract_inverted_index.slow | 69 |
| abstract_inverted_index.that | 162 |
| abstract_inverted_index.this | 77 |
| abstract_inverted_index.thus | 172 |
| abstract_inverted_index.time | 46, 53 |
| abstract_inverted_index.used | 21 |
| abstract_inverted_index.very | 185 |
| abstract_inverted_index.with | 61, 122, 148 |
| abstract_inverted_index.(LIF) | 33 |
| abstract_inverted_index.(RNN) | 65 |
| abstract_inverted_index.(SHD) | 134 |
| abstract_inverted_index.(SNN) | 3 |
| abstract_inverted_index.10000 | 158 |
| abstract_inverted_index.Leaky | 29 |
| abstract_inverted_index.Units | 74 |
| abstract_inverted_index.being | 55 |
| abstract_inverted_index.input | 155 |
| abstract_inverted_index.large | 186 |
| abstract_inverted_index.learn | 7 |
| abstract_inverted_index.since | 40 |
| abstract_inverted_index.state | 44, 51 |
| abstract_inverted_index.time. | 114 |
| abstract_inverted_index.times | 142, 169 |
| abstract_inverted_index.using | 11 |
| abstract_inverted_index.while | 10, 139 |
| abstract_inverted_index.(GPU). | 75 |
| abstract_inverted_index.(SPSN) | 86 |
| abstract_inverted_index.Digits | 133 |
| abstract_inverted_index.Neural | 63 |
| abstract_inverted_index.Neuron | 85 |
| abstract_inverted_index.faster | 143, 170 |
| abstract_inverted_index.linear | 99 |
| abstract_inverted_index.longer | 154 |
| abstract_inverted_index.neural | 1, 127 |
| abstract_inverted_index.neuron | 23 |
| abstract_inverted_index.paper, | 78 |
| abstract_inverted_index.relies | 48 |
| abstract_inverted_index.shared | 60 |
| abstract_inverted_index.widely | 20 |
| abstract_inverted_index.Spiking | 0, 84, 131 |
| abstract_inverted_index.energy, | 13 |
| abstract_inverted_index.network | 151 |
| abstract_inverted_index.neuron. | 34 |
| abstract_inverted_index.neurons | 36 |
| abstract_inverted_index.operate | 37 |
| abstract_inverted_index.propose | 80 |
| abstract_inverted_index.results | 67, 118, 166 |
| abstract_inverted_index.spiking | 22, 105 |
| abstract_inverted_index.Graphics | 72 |
| abstract_inverted_index.Networks | 64 |
| abstract_inverted_index.approach | 117, 165, 179 |
| abstract_inverted_index.dataset, | 135 |
| abstract_inverted_index.features | 9 |
| abstract_inverted_index.however, | 39 |
| abstract_inverted_index.learning | 26 |
| abstract_inverted_index.networks | 2, 128, 138, 147 |
| abstract_inverted_index.neurons. | 95 |
| abstract_inverted_index.overcome | 88 |
| abstract_inverted_index.parallel | 112 |
| abstract_inverted_index.proposed | 116, 164, 178 |
| abstract_inverted_index.training | 70, 91, 140, 183 |
| abstract_inverted_index.Integrate | 30 |
| abstract_inverted_index.Recurrent | 62 |
| abstract_inverted_index.component | 101 |
| abstract_inverted_index.computed. | 56 |
| abstract_inverted_index.datasets. | 187 |
| abstract_inverted_index.function, | 106 |
| abstract_inverted_index.hardware. | 17 |
| abstract_inverted_index.potential | 175 |
| abstract_inverted_index.sequences | 156 |
| abstract_inverted_index.training, | 171 |
| abstract_inverted_index.Heidelberg | 132 |
| abstract_inverted_index.Processing | 73 |
| abstract_inverted_index.Stochastic | 82 |
| abstract_inverted_index.accelerate | 181 |
| abstract_inverted_index.comparable | 121 |
| abstract_inverted_index.especially | 14 |
| abstract_inverted_index.limitation | 58, 92 |
| abstract_inverted_index.non-linear | 104 |
| abstract_inverted_index.separating | 97 |
| abstract_inverted_index.sequential | 90 |
| abstract_inverted_index.computation | 42 |
| abstract_inverted_index.feedforward | 126 |
| abstract_inverted_index.integration | 100 |
| abstract_inverted_index.non-spiking | 146 |
| abstract_inverted_index.performance | 120 |
| abstract_inverted_index.time-steps, | 159 |
| abstract_inverted_index.neuromorphic | 16 |
| abstract_inverted_index.architecture. | 152 |
| abstract_inverted_index.demonstrating | 173 |
| abstract_inverted_index.outperforming | 136, 145 |
| abstract_inverted_index.sequentially, | 38 |
| abstract_inverted_index.Parallelizable | 83 |
| abstract_inverted_index.spatiotemporal | 8 |
| abstract_inverted_index.state-of-the-art | 124 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8299999833106995 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.44907671 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |