Acceleration for Distributed Transshipment and Parallel Maximum Flow Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.06581
We combine several recent advancements to solve $(1+\varepsilon)$-transshipment and $(1+\varepsilon)$-maximum flow with a parallel algorithm with $\tilde{O}(1/\varepsilon)$ depth and $\tilde{O}(m/\varepsilon)$ work. We achieve this by developing and deploying suitable parallel linear cost approximators in conjunction with an accelerated continuous optimization framework known as the box-simplex game by Jambulapati et al. (ICALP 2022). A linear cost approximator is a linear operator that allows us to efficiently estimate the cost of the optimal solution to a given routing problem. Obtaining accelerated $\varepsilon$ dependencies for both problems requires developing a stronger multicommodity cost approximator, one where cancellations between different commodities are disallowed. For maximum flow, we observe that a recent linear cost approximator due to Agarwal et al. (SODA 2024) can be augmented with additional parallel operations and achieve $\varepsilon^{-1}$ dependency via the box-simplex game. For transshipment, we also construct a deterministic and distributed approximator. This yields a deterministic CONGEST algorithm that requires $\tilde{O}(\varepsilon^{-1}(D + \sqrt{n}))$ rounds on general networks of hop diameter $D$ and $\tilde{O}(\varepsilon^{-1}D)$ rounds on minor-free networks to compute a $(1+\varepsilon)$-approximation.
Related Topics
- Type
- preprint
- Landing Page
- https://doi.org/10.48550/arxiv.2511.06581
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7105165262
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7105165262Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.06581Digital Object Identifier
- Title
-
Acceleration for Distributed Transshipment and Parallel Maximum FlowWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-09Full publication date if available
- Authors
-
Grunau, Christoph, Kyng, Rasmus, Zuzic, GoranList of authors in order
- Landing page
-
https://doi.org/10.48550/arxiv.2511.06581Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.48550/arxiv.2511.06581Direct OA link when available
- Concepts
-
Mathematical optimization, Computer science, Flow network, Transshipment (information security), Maximum flow problem, Minimum-cost flow problem, Acceleration, Linear programming, Construct (python library), Routing (electronic design automation), Operator (biology), Flow (mathematics), Multi-commodity flow problem, Flow routing, Algorithm, Linear system, Distributed computing, Dependency (UML), Container (type theory), Decomposition, Mathematics, Distributed algorithm, ScalabilityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7105165262 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.06581 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.06581 |
| ids.openalex | https://openalex.org/W7105165262 |
| fwci | |
| type | preprint |
| title | Acceleration for Distributed Transshipment and Parallel Maximum Flow |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C126255220 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6979427933692932 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[0].display_name | Mathematical optimization |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6140971183776855 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C114809511 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5370845198631287 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1412924 |
| concepts[2].display_name | Flow network |
| concepts[3].id | https://openalex.org/C2776234997 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5341137051582336 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17134191 |
| concepts[3].display_name | Transshipment (information security) |
| concepts[4].id | https://openalex.org/C157469704 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48314398527145386 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2585642 |
| concepts[4].display_name | Maximum flow problem |
| concepts[5].id | https://openalex.org/C99545648 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4695435166358948 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2897180 |
| concepts[5].display_name | Minimum-cost flow problem |
| concepts[6].id | https://openalex.org/C117896860 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4380490183830261 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11376 |
| concepts[6].display_name | Acceleration |
| concepts[7].id | https://openalex.org/C41045048 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42991167306900024 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q202843 |
| concepts[7].display_name | Linear programming |
| concepts[8].id | https://openalex.org/C2780801425 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42564690113067627 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5164392 |
| concepts[8].display_name | Construct (python library) |
| concepts[9].id | https://openalex.org/C74172769 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42303380370140076 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1446839 |
| concepts[9].display_name | Routing (electronic design automation) |
| concepts[10].id | https://openalex.org/C17020691 |
| concepts[10].level | 5 |
| concepts[10].score | 0.40021511912345886 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q139677 |
| concepts[10].display_name | Operator (biology) |
| concepts[11].id | https://openalex.org/C38349280 |
| concepts[11].level | 2 |
| concepts[11].score | 0.39187943935394287 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1434290 |
| concepts[11].display_name | Flow (mathematics) |
| concepts[12].id | https://openalex.org/C170334043 |
| concepts[12].level | 3 |
| concepts[12].score | 0.36214226484298706 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q6934437 |
| concepts[12].display_name | Multi-commodity flow problem |
| concepts[13].id | https://openalex.org/C2779313249 |
| concepts[13].level | 2 |
| concepts[13].score | 0.33432912826538086 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7371615 |
| concepts[13].display_name | Flow routing |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3300298750400543 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C6802819 |
| concepts[15].level | 2 |
| concepts[15].score | 0.32767942547798157 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1072174 |
| concepts[15].display_name | Linear system |
| concepts[16].id | https://openalex.org/C120314980 |
| concepts[16].level | 1 |
| concepts[16].score | 0.3099290430545807 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[16].display_name | Distributed computing |
| concepts[17].id | https://openalex.org/C19768560 |
| concepts[17].level | 2 |
| concepts[17].score | 0.2910956144332886 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q320727 |
| concepts[17].display_name | Dependency (UML) |
| concepts[18].id | https://openalex.org/C2781018962 |
| concepts[18].level | 2 |
| concepts[18].score | 0.2853243052959442 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5164884 |
| concepts[18].display_name | Container (type theory) |
| concepts[19].id | https://openalex.org/C124681953 |
| concepts[19].level | 2 |
| concepts[19].score | 0.2829586863517761 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q339062 |
| concepts[19].display_name | Decomposition |
| concepts[20].id | https://openalex.org/C33923547 |
| concepts[20].level | 0 |
| concepts[20].score | 0.27004143595695496 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[20].display_name | Mathematics |
| concepts[21].id | https://openalex.org/C130120984 |
| concepts[21].level | 2 |
| concepts[21].score | 0.2691987454891205 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q2835898 |
| concepts[21].display_name | Distributed algorithm |
| concepts[22].id | https://openalex.org/C48044578 |
| concepts[22].level | 2 |
| concepts[22].score | 0.25328806042671204 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[22].display_name | Scalability |
| keywords[0].id | https://openalex.org/keywords/flow-network |
| keywords[0].score | 0.5370845198631287 |
| keywords[0].display_name | Flow network |
| keywords[1].id | https://openalex.org/keywords/transshipment |
| keywords[1].score | 0.5341137051582336 |
| keywords[1].display_name | Transshipment (information security) |
| keywords[2].id | https://openalex.org/keywords/maximum-flow-problem |
| keywords[2].score | 0.48314398527145386 |
| keywords[2].display_name | Maximum flow problem |
| keywords[3].id | https://openalex.org/keywords/minimum-cost-flow-problem |
| keywords[3].score | 0.4695435166358948 |
| keywords[3].display_name | Minimum-cost flow problem |
| keywords[4].id | https://openalex.org/keywords/acceleration |
| keywords[4].score | 0.4380490183830261 |
| keywords[4].display_name | Acceleration |
| keywords[5].id | https://openalex.org/keywords/linear-programming |
| keywords[5].score | 0.42991167306900024 |
| keywords[5].display_name | Linear programming |
| keywords[6].id | https://openalex.org/keywords/construct |
| keywords[6].score | 0.42564690113067627 |
| keywords[6].display_name | Construct (python library) |
| keywords[7].id | https://openalex.org/keywords/routing |
| keywords[7].score | 0.42303380370140076 |
| keywords[7].display_name | Routing (electronic design automation) |
| language | |
| locations[0].id | doi:10.48550/arxiv.2511.06581 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.48550/arxiv.2511.06581 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A2137046868 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Grunau, Christoph |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Grunau, Christoph |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A4221944067 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Kyng, Rasmus |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kyng, Rasmus |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A4223937906 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Zuzic, Goran |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Zuzic, Goran |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.48550/arxiv.2511.06581 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-12T00:00:00 |
| display_name | Acceleration for Distributed Transshipment and Parallel Maximum Flow |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-23T05:10:03.516525 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.48550/arxiv.2511.06581 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.48550/arxiv.2511.06581 |
| primary_location.id | doi:10.48550/arxiv.2511.06581 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.48550/arxiv.2511.06581 |
| publication_date | 2025-11-09 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.+ | 151 |
| abstract_inverted_index.A | 52 |
| abstract_inverted_index.a | 12, 57, 73, 86, 105, 137, 144, 169 |
| abstract_inverted_index.We | 0, 21 |
| abstract_inverted_index.an | 36 |
| abstract_inverted_index.as | 42 |
| abstract_inverted_index.be | 118 |
| abstract_inverted_index.by | 24, 46 |
| abstract_inverted_index.et | 48, 113 |
| abstract_inverted_index.in | 33 |
| abstract_inverted_index.is | 56 |
| abstract_inverted_index.of | 68, 157 |
| abstract_inverted_index.on | 154, 164 |
| abstract_inverted_index.to | 5, 63, 72, 111, 167 |
| abstract_inverted_index.us | 62 |
| abstract_inverted_index.we | 102, 134 |
| abstract_inverted_index.$D$ | 160 |
| abstract_inverted_index.For | 99, 132 |
| abstract_inverted_index.al. | 49, 114 |
| abstract_inverted_index.and | 8, 18, 26, 124, 139, 161 |
| abstract_inverted_index.are | 97 |
| abstract_inverted_index.can | 117 |
| abstract_inverted_index.due | 110 |
| abstract_inverted_index.for | 81 |
| abstract_inverted_index.hop | 158 |
| abstract_inverted_index.one | 91 |
| abstract_inverted_index.the | 43, 66, 69, 129 |
| abstract_inverted_index.via | 128 |
| abstract_inverted_index.This | 142 |
| abstract_inverted_index.also | 135 |
| abstract_inverted_index.both | 82 |
| abstract_inverted_index.cost | 31, 54, 67, 89, 108 |
| abstract_inverted_index.flow | 10 |
| abstract_inverted_index.game | 45 |
| abstract_inverted_index.that | 60, 104, 148 |
| abstract_inverted_index.this | 23 |
| abstract_inverted_index.with | 11, 15, 35, 120 |
| abstract_inverted_index.(SODA | 115 |
| abstract_inverted_index.2024) | 116 |
| abstract_inverted_index.depth | 17 |
| abstract_inverted_index.flow, | 101 |
| abstract_inverted_index.game. | 131 |
| abstract_inverted_index.given | 74 |
| abstract_inverted_index.known | 41 |
| abstract_inverted_index.solve | 6 |
| abstract_inverted_index.where | 92 |
| abstract_inverted_index.work. | 20 |
| abstract_inverted_index.(ICALP | 50 |
| abstract_inverted_index.2022). | 51 |
| abstract_inverted_index.allows | 61 |
| abstract_inverted_index.linear | 30, 53, 58, 107 |
| abstract_inverted_index.recent | 3, 106 |
| abstract_inverted_index.rounds | 153, 163 |
| abstract_inverted_index.yields | 143 |
| abstract_inverted_index.Agarwal | 112 |
| abstract_inverted_index.CONGEST | 146 |
| abstract_inverted_index.achieve | 22, 125 |
| abstract_inverted_index.between | 94 |
| abstract_inverted_index.combine | 1 |
| abstract_inverted_index.compute | 168 |
| abstract_inverted_index.general | 155 |
| abstract_inverted_index.maximum | 100 |
| abstract_inverted_index.observe | 103 |
| abstract_inverted_index.optimal | 70 |
| abstract_inverted_index.routing | 75 |
| abstract_inverted_index.several | 2 |
| abstract_inverted_index.diameter | 159 |
| abstract_inverted_index.estimate | 65 |
| abstract_inverted_index.networks | 156, 166 |
| abstract_inverted_index.operator | 59 |
| abstract_inverted_index.parallel | 13, 29, 122 |
| abstract_inverted_index.problem. | 76 |
| abstract_inverted_index.problems | 83 |
| abstract_inverted_index.requires | 84, 149 |
| abstract_inverted_index.solution | 71 |
| abstract_inverted_index.stronger | 87 |
| abstract_inverted_index.suitable | 28 |
| abstract_inverted_index.Obtaining | 77 |
| abstract_inverted_index.algorithm | 14, 147 |
| abstract_inverted_index.augmented | 119 |
| abstract_inverted_index.construct | 136 |
| abstract_inverted_index.deploying | 27 |
| abstract_inverted_index.different | 95 |
| abstract_inverted_index.framework | 40 |
| abstract_inverted_index.additional | 121 |
| abstract_inverted_index.continuous | 38 |
| abstract_inverted_index.dependency | 127 |
| abstract_inverted_index.developing | 25, 85 |
| abstract_inverted_index.minor-free | 165 |
| abstract_inverted_index.operations | 123 |
| abstract_inverted_index.Jambulapati | 47 |
| abstract_inverted_index.\sqrt{n}))$ | 152 |
| abstract_inverted_index.accelerated | 37, 78 |
| abstract_inverted_index.box-simplex | 44, 130 |
| abstract_inverted_index.commodities | 96 |
| abstract_inverted_index.conjunction | 34 |
| abstract_inverted_index.disallowed. | 98 |
| abstract_inverted_index.distributed | 140 |
| abstract_inverted_index.efficiently | 64 |
| abstract_inverted_index.advancements | 4 |
| abstract_inverted_index.approximator | 55, 109 |
| abstract_inverted_index.dependencies | 80 |
| abstract_inverted_index.optimization | 39 |
| abstract_inverted_index.$\varepsilon$ | 79 |
| abstract_inverted_index.approximator, | 90 |
| abstract_inverted_index.approximator. | 141 |
| abstract_inverted_index.approximators | 32 |
| abstract_inverted_index.cancellations | 93 |
| abstract_inverted_index.deterministic | 138, 145 |
| abstract_inverted_index.multicommodity | 88 |
| abstract_inverted_index.transshipment, | 133 |
| abstract_inverted_index.$\varepsilon^{-1}$ | 126 |
| abstract_inverted_index.$(1+\varepsilon)$-maximum | 9 |
| abstract_inverted_index.$\tilde{O}(1/\varepsilon)$ | 16 |
| abstract_inverted_index.$\tilde{O}(m/\varepsilon)$ | 19 |
| abstract_inverted_index.$\tilde{O}(\varepsilon^{-1}(D | 150 |
| abstract_inverted_index.$\tilde{O}(\varepsilon^{-1}D)$ | 162 |
| abstract_inverted_index.$(1+\varepsilon)$-transshipment | 7 |
| abstract_inverted_index.$(1+\varepsilon)$-approximation. | 170 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |