Acceleration of Power System Dynamic Simulations using a Deep Equilibrium Layer and Neural ODE Surrogate Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2405.06827
The dominant paradigm for power system dynamic simulation is to build system-level simulations by combining physics-based models of individual components. The sheer size of the system along with the rapid integration of inverter-based resources exacerbates the computational burden of running time domain simulations. In this paper, we propose a data-driven surrogate model based on implicit machine learning -- specifically deep equilibrium layers and neural ordinary differential equations -- to learn a reduced order model of a portion of the full underlying system. The data-driven surrogate achieves similar accuracy and reduction in simulation time compared to a physics-based surrogate, without the constraint of requiring detailed knowledge of the underlying dynamic models. This work also establishes key requirements needed to integrate the surrogate into existing simulation workflows; the proposed surrogate is initialized to a steady state operating point that matches the power flow solution by design.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2405.06827
- https://arxiv.org/pdf/2405.06827
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396913083
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396913083Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2405.06827Digital Object Identifier
- Title
-
Acceleration of Power System Dynamic Simulations using a Deep Equilibrium Layer and Neural ODE SurrogateWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-10Full publication date if available
- Authors
-
Matthew Bossart, José Daniel Lara, Ciaran Roberts, Rodrigo Henriquez-Auba, Duncan S. Callaway, Bri‐Mathias HodgeList of authors in order
- Landing page
-
https://arxiv.org/abs/2405.06827Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2405.06827Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2405.06827Direct OA link when available
- Concepts
-
Ode, Acceleration, Artificial neural network, Power (physics), Computer science, Control theory (sociology), Layer (electronics), Mechanics, Applied mathematics, Mathematics, Physics, Classical mechanics, Artificial intelligence, Materials science, Thermodynamics, Control (management), Composite materialTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396913083 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2405.06827 |
| ids.doi | https://doi.org/10.48550/arxiv.2405.06827 |
| ids.openalex | https://openalex.org/W4396913083 |
| fwci | |
| type | preprint |
| title | Acceleration of Power System Dynamic Simulations using a Deep Equilibrium Layer and Neural ODE Surrogate |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9656000137329102 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C34862557 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8814906477928162 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q178985 |
| concepts[0].display_name | Ode |
| concepts[1].id | https://openalex.org/C117896860 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7444887161254883 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11376 |
| concepts[1].display_name | Acceleration |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5171874761581421 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C163258240 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5143121480941772 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[3].display_name | Power (physics) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4928562641143799 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C47446073 |
| concepts[5].level | 3 |
| concepts[5].score | 0.42669180035591125 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[5].display_name | Control theory (sociology) |
| concepts[6].id | https://openalex.org/C2779227376 |
| concepts[6].level | 2 |
| concepts[6].score | 0.41434818506240845 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6505497 |
| concepts[6].display_name | Layer (electronics) |
| concepts[7].id | https://openalex.org/C57879066 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3495182394981384 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q41217 |
| concepts[7].display_name | Mechanics |
| concepts[8].id | https://openalex.org/C28826006 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2911105751991272 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[8].display_name | Applied mathematics |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2857188582420349 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.2430945336818695 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C74650414 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1941930055618286 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11397 |
| concepts[11].display_name | Classical mechanics |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.1717655062675476 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C192562407 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1336159110069275 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[13].display_name | Materials science |
| concepts[14].id | https://openalex.org/C97355855 |
| concepts[14].level | 1 |
| concepts[14].score | 0.11658856272697449 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[14].display_name | Thermodynamics |
| concepts[15].id | https://openalex.org/C2775924081 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[15].display_name | Control (management) |
| concepts[16].id | https://openalex.org/C159985019 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[16].display_name | Composite material |
| keywords[0].id | https://openalex.org/keywords/ode |
| keywords[0].score | 0.8814906477928162 |
| keywords[0].display_name | Ode |
| keywords[1].id | https://openalex.org/keywords/acceleration |
| keywords[1].score | 0.7444887161254883 |
| keywords[1].display_name | Acceleration |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.5171874761581421 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/power |
| keywords[3].score | 0.5143121480941772 |
| keywords[3].display_name | Power (physics) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4928562641143799 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/control-theory |
| keywords[5].score | 0.42669180035591125 |
| keywords[5].display_name | Control theory (sociology) |
| keywords[6].id | https://openalex.org/keywords/layer |
| keywords[6].score | 0.41434818506240845 |
| keywords[6].display_name | Layer (electronics) |
| keywords[7].id | https://openalex.org/keywords/mechanics |
| keywords[7].score | 0.3495182394981384 |
| keywords[7].display_name | Mechanics |
| keywords[8].id | https://openalex.org/keywords/applied-mathematics |
| keywords[8].score | 0.2911105751991272 |
| keywords[8].display_name | Applied mathematics |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.2857188582420349 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/physics |
| keywords[10].score | 0.2430945336818695 |
| keywords[10].display_name | Physics |
| keywords[11].id | https://openalex.org/keywords/classical-mechanics |
| keywords[11].score | 0.1941930055618286 |
| keywords[11].display_name | Classical mechanics |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.1717655062675476 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/materials-science |
| keywords[13].score | 0.1336159110069275 |
| keywords[13].display_name | Materials science |
| keywords[14].id | https://openalex.org/keywords/thermodynamics |
| keywords[14].score | 0.11658856272697449 |
| keywords[14].display_name | Thermodynamics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2405.06827 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2405.06827 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2405.06827 |
| locations[1].id | doi:10.48550/arxiv.2405.06827 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2405.06827 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5087265647 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3575-3905 |
| authorships[0].author.display_name | Matthew Bossart |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bossart, Matthew |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5014588027 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9690-3308 |
| authorships[1].author.display_name | José Daniel Lara |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lara, Jose Daniel |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5050417081 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1029-8851 |
| authorships[2].author.display_name | Ciaran Roberts |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Roberts, Ciaran |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5031742029 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8595-6620 |
| authorships[3].author.display_name | Rodrigo Henriquez-Auba |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Henriquez-Auba, Rodrigo |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5066926540 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3316-9008 |
| authorships[4].author.display_name | Duncan S. Callaway |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Callaway, Duncan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5040173593 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8684-0534 |
| authorships[5].author.display_name | Bri‐Mathias Hodge |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Hodge, Bri-Mathias |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2405.06827 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-05-15T00:00:00 |
| display_name | Acceleration of Power System Dynamic Simulations using a Deep Equilibrium Layer and Neural ODE Surrogate |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9656000137329102 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W2371448224, https://openalex.org/W3134495997, https://openalex.org/W2363680170, https://openalex.org/W2376428685, https://openalex.org/W4256082577, https://openalex.org/W625783435, https://openalex.org/W2048742619, https://openalex.org/W2384641672, https://openalex.org/W2742179975, https://openalex.org/W2362647823 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2405.06827 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2405.06827 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2405.06827 |
| primary_location.id | pmh:oai:arXiv.org:2405.06827 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2405.06827 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2405.06827 |
| publication_date | 2024-05-10 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 48, 70, 75, 95, 131 |
| abstract_inverted_index.-- | 57, 67 |
| abstract_inverted_index.In | 43 |
| abstract_inverted_index.by | 13, 142 |
| abstract_inverted_index.in | 90 |
| abstract_inverted_index.is | 8, 128 |
| abstract_inverted_index.of | 17, 23, 31, 38, 74, 77, 101, 105 |
| abstract_inverted_index.on | 53 |
| abstract_inverted_index.to | 9, 68, 94, 117, 130 |
| abstract_inverted_index.we | 46 |
| abstract_inverted_index.The | 0, 20, 82 |
| abstract_inverted_index.and | 62, 88 |
| abstract_inverted_index.for | 3 |
| abstract_inverted_index.key | 114 |
| abstract_inverted_index.the | 24, 28, 35, 78, 99, 106, 119, 125, 138 |
| abstract_inverted_index.This | 110 |
| abstract_inverted_index.also | 112 |
| abstract_inverted_index.deep | 59 |
| abstract_inverted_index.flow | 140 |
| abstract_inverted_index.full | 79 |
| abstract_inverted_index.into | 121 |
| abstract_inverted_index.size | 22 |
| abstract_inverted_index.that | 136 |
| abstract_inverted_index.this | 44 |
| abstract_inverted_index.time | 40, 92 |
| abstract_inverted_index.with | 27 |
| abstract_inverted_index.work | 111 |
| abstract_inverted_index.along | 26 |
| abstract_inverted_index.based | 52 |
| abstract_inverted_index.build | 10 |
| abstract_inverted_index.learn | 69 |
| abstract_inverted_index.model | 51, 73 |
| abstract_inverted_index.order | 72 |
| abstract_inverted_index.point | 135 |
| abstract_inverted_index.power | 4, 139 |
| abstract_inverted_index.rapid | 29 |
| abstract_inverted_index.sheer | 21 |
| abstract_inverted_index.state | 133 |
| abstract_inverted_index.burden | 37 |
| abstract_inverted_index.domain | 41 |
| abstract_inverted_index.layers | 61 |
| abstract_inverted_index.models | 16 |
| abstract_inverted_index.needed | 116 |
| abstract_inverted_index.neural | 63 |
| abstract_inverted_index.paper, | 45 |
| abstract_inverted_index.steady | 132 |
| abstract_inverted_index.system | 5, 25 |
| abstract_inverted_index.design. | 143 |
| abstract_inverted_index.dynamic | 6, 108 |
| abstract_inverted_index.machine | 55 |
| abstract_inverted_index.matches | 137 |
| abstract_inverted_index.models. | 109 |
| abstract_inverted_index.portion | 76 |
| abstract_inverted_index.propose | 47 |
| abstract_inverted_index.reduced | 71 |
| abstract_inverted_index.running | 39 |
| abstract_inverted_index.similar | 86 |
| abstract_inverted_index.system. | 81 |
| abstract_inverted_index.without | 98 |
| abstract_inverted_index.accuracy | 87 |
| abstract_inverted_index.achieves | 85 |
| abstract_inverted_index.compared | 93 |
| abstract_inverted_index.detailed | 103 |
| abstract_inverted_index.dominant | 1 |
| abstract_inverted_index.existing | 122 |
| abstract_inverted_index.implicit | 54 |
| abstract_inverted_index.learning | 56 |
| abstract_inverted_index.ordinary | 64 |
| abstract_inverted_index.paradigm | 2 |
| abstract_inverted_index.proposed | 126 |
| abstract_inverted_index.solution | 141 |
| abstract_inverted_index.combining | 14 |
| abstract_inverted_index.equations | 66 |
| abstract_inverted_index.integrate | 118 |
| abstract_inverted_index.knowledge | 104 |
| abstract_inverted_index.operating | 134 |
| abstract_inverted_index.reduction | 89 |
| abstract_inverted_index.requiring | 102 |
| abstract_inverted_index.resources | 33 |
| abstract_inverted_index.surrogate | 50, 84, 120, 127 |
| abstract_inverted_index.constraint | 100 |
| abstract_inverted_index.individual | 18 |
| abstract_inverted_index.simulation | 7, 91, 123 |
| abstract_inverted_index.surrogate, | 97 |
| abstract_inverted_index.underlying | 80, 107 |
| abstract_inverted_index.workflows; | 124 |
| abstract_inverted_index.components. | 19 |
| abstract_inverted_index.data-driven | 49, 83 |
| abstract_inverted_index.equilibrium | 60 |
| abstract_inverted_index.establishes | 113 |
| abstract_inverted_index.exacerbates | 34 |
| abstract_inverted_index.initialized | 129 |
| abstract_inverted_index.integration | 30 |
| abstract_inverted_index.simulations | 12 |
| abstract_inverted_index.differential | 65 |
| abstract_inverted_index.requirements | 115 |
| abstract_inverted_index.simulations. | 42 |
| abstract_inverted_index.specifically | 58 |
| abstract_inverted_index.system-level | 11 |
| abstract_inverted_index.computational | 36 |
| abstract_inverted_index.physics-based | 15, 96 |
| abstract_inverted_index.inverter-based | 32 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |