Accelerometer-Based Gait Analysis as a Predictive Tool for Mild Cognitive Impairment in Older Adults Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/s25237390
· OA: W4417273754
This study explores the potential of accelerometer-based gait analysis as a non-invasive approach for predicting cognitive impairment in older adults. A total of 75 participants (61.3% female; mean age: 78.9 years), including cognitively normal individuals and patients with dementia, were enrolled. Walking data were collected using a six-axis waist-worn accelerometer during self-paced locomotion. Allan variance (AVAR), a robust statistical measure of frequency stability, was applied to characterize gait dynamics. AVAR-derived features, combined with participant age, were used as inputs to machine learning models, logistic regression and Light Gradient Boosting Machine (LightGBM) for classifying cognitive status based on Mini-Mental State Examination (MMSE) scores. LightGBM achieved superior performance (AUC = 0.92) compared to logistic regression (AUC = 0.85). Although mild cognitive impairment (MCI) cases were grouped with cognitively normal participants, gait-based classification revealed that MCI individuals exhibited patterns more similar to those with cognitive impairment. These results suggest that AVAR-based gait features are promising for early detection of cognitive decline in older adults.