Accent Normalization Using Self-Supervised Discrete Tokens with Non-Parallel Data Article Swipe
Qibing Bai
,
Sho Inoue
,
Shuai Wang
,
Zhongjie Jiang
,
Yannan Wang
,
Haizhou Li
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2507.17735
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2507.17735
Accent normalization converts foreign-accented speech into native-like speech while preserving speaker identity. We propose a novel pipeline using self-supervised discrete tokens and non-parallel training data. The system extracts tokens from source speech, converts them through a dedicated model, and synthesizes the output using flow matching. Our method demonstrates superior performance over a frame-to-frame baseline in naturalness, accentedness reduction, and timbre preservation across multiple English accents. Through token-level phonetic analysis, we validate the effectiveness of our token-based approach. We also develop two duration preservation methods, suitable for applications such as dubbing.
Related Topics
Concepts
No concepts available.
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.17735
- https://arxiv.org/pdf/2507.17735
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414886143
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414886143Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2507.17735Digital Object Identifier
- Title
-
Accent Normalization Using Self-Supervised Discrete Tokens with Non-Parallel DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-23Full publication date if available
- Authors
-
Qibing Bai, Sho Inoue, Shuai Wang, Zhongjie Jiang, Yannan Wang, Haizhou LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.17735Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.17735Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.17735Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414886143 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2507.17735 |
| ids.doi | https://doi.org/10.48550/arxiv.2507.17735 |
| ids.openalex | https://openalex.org/W4414886143 |
| fwci | |
| type | preprint |
| title | Accent Normalization Using Self-Supervised Discrete Tokens with Non-Parallel Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.5164999961853027 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.17735 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.17735 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.17735 |
| locations[1].id | doi:10.48550/arxiv.2507.17735 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2507.17735 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5065778847 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Qibing Bai |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bai, Qibing |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5108413182 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Sho Inoue |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Inoue, Sho |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100328312 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7897-2024 |
| authorships[2].author.display_name | Shuai Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Shuai |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101421603 |
| authorships[3].author.orcid | https://orcid.org/0009-0009-7256-6592 |
| authorships[3].author.display_name | Zhongjie Jiang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jiang, Zhongjie |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5084128157 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7248-4954 |
| authorships[4].author.display_name | Yannan Wang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wang, Yannan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5032690182 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9158-9401 |
| authorships[5].author.display_name | Haizhou Li |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Li, Haizhou |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.17735 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Accent Normalization Using Self-Supervised Discrete Tokens with Non-Parallel Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.5164999961853027 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.17735 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.17735 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.17735 |
| primary_location.id | pmh:oai:arXiv.org:2507.17735 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.17735 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.17735 |
| publication_date | 2025-07-23 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 14, 35, 51 |
| abstract_inverted_index.We | 12, 77 |
| abstract_inverted_index.as | 88 |
| abstract_inverted_index.in | 54 |
| abstract_inverted_index.of | 73 |
| abstract_inverted_index.we | 69 |
| abstract_inverted_index.Our | 45 |
| abstract_inverted_index.The | 25 |
| abstract_inverted_index.and | 21, 38, 58 |
| abstract_inverted_index.for | 85 |
| abstract_inverted_index.our | 74 |
| abstract_inverted_index.the | 40, 71 |
| abstract_inverted_index.two | 80 |
| abstract_inverted_index.also | 78 |
| abstract_inverted_index.flow | 43 |
| abstract_inverted_index.from | 29 |
| abstract_inverted_index.into | 5 |
| abstract_inverted_index.over | 50 |
| abstract_inverted_index.such | 87 |
| abstract_inverted_index.them | 33 |
| abstract_inverted_index.data. | 24 |
| abstract_inverted_index.novel | 15 |
| abstract_inverted_index.using | 17, 42 |
| abstract_inverted_index.while | 8 |
| abstract_inverted_index.Accent | 0 |
| abstract_inverted_index.across | 61 |
| abstract_inverted_index.method | 46 |
| abstract_inverted_index.model, | 37 |
| abstract_inverted_index.output | 41 |
| abstract_inverted_index.source | 30 |
| abstract_inverted_index.speech | 4, 7 |
| abstract_inverted_index.system | 26 |
| abstract_inverted_index.timbre | 59 |
| abstract_inverted_index.tokens | 20, 28 |
| abstract_inverted_index.English | 63 |
| abstract_inverted_index.Through | 65 |
| abstract_inverted_index.develop | 79 |
| abstract_inverted_index.propose | 13 |
| abstract_inverted_index.speaker | 10 |
| abstract_inverted_index.speech, | 31 |
| abstract_inverted_index.through | 34 |
| abstract_inverted_index.accents. | 64 |
| abstract_inverted_index.baseline | 53 |
| abstract_inverted_index.converts | 2, 32 |
| abstract_inverted_index.discrete | 19 |
| abstract_inverted_index.dubbing. | 89 |
| abstract_inverted_index.duration | 81 |
| abstract_inverted_index.extracts | 27 |
| abstract_inverted_index.methods, | 83 |
| abstract_inverted_index.multiple | 62 |
| abstract_inverted_index.phonetic | 67 |
| abstract_inverted_index.pipeline | 16 |
| abstract_inverted_index.suitable | 84 |
| abstract_inverted_index.superior | 48 |
| abstract_inverted_index.training | 23 |
| abstract_inverted_index.validate | 70 |
| abstract_inverted_index.analysis, | 68 |
| abstract_inverted_index.approach. | 76 |
| abstract_inverted_index.dedicated | 36 |
| abstract_inverted_index.identity. | 11 |
| abstract_inverted_index.matching. | 44 |
| abstract_inverted_index.preserving | 9 |
| abstract_inverted_index.reduction, | 57 |
| abstract_inverted_index.native-like | 6 |
| abstract_inverted_index.performance | 49 |
| abstract_inverted_index.synthesizes | 39 |
| abstract_inverted_index.token-based | 75 |
| abstract_inverted_index.token-level | 66 |
| abstract_inverted_index.accentedness | 56 |
| abstract_inverted_index.applications | 86 |
| abstract_inverted_index.demonstrates | 47 |
| abstract_inverted_index.naturalness, | 55 |
| abstract_inverted_index.non-parallel | 22 |
| abstract_inverted_index.preservation | 60, 82 |
| abstract_inverted_index.effectiveness | 72 |
| abstract_inverted_index.normalization | 1 |
| abstract_inverted_index.frame-to-frame | 52 |
| abstract_inverted_index.self-supervised | 18 |
| abstract_inverted_index.foreign-accented | 3 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |