Accompanying data for "A Multilevel statistical process control chart framework for personalized patient monitoring: A simulation study using patients historical data" Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.17808226
Statistical Process Control (SPC) charts offer a potentially effective means of continuously monitoring patient time-series data to enable the early detection ofclinical abnormalities. A significant challenge in implementing SPC methods, such as the Exponentially Weighted Moving Average (EWMA), is obtaining sufficient phase-I data from individual patients. This data is crucial for accurately estimating control limits using the expected mean and standard deviation duringstable periods. In contrast to other fields where ample historical data is available, patient monitoring systems often lack enough observations to effectively set these limits. To address this issue, we propose a multilevel SPC approach that uses historical data from stable subjects. By fitting a multilevel model with arandom intercept, our method enables comparison of an individual’s longitudinal measurements against cross-sectional data from other stable patients. Themodel recursively estimates the expected mean within a calibration window, applying distinct control limit coefficients compared to phase-II monitoring period. Person-specific deviations, computed as residuals between actual and estimated values are then monitored via an EWMA control chart. Simulation studies usingsynthetic data modeled on left ventricular assist device (LVAD) patients were conducted to evaluate this approach. The model was evaluated across multiplesimulation scenarios, varying parameters such as sampling frequency, shift size and type, to assess its robustness under different operating conditions. Resultsshowed that longer calibration periods enhanced alignment with patient data, thereby increasing the true-positive rate and reducing false alarms. However, if the calibration window becomes excessively long, it may lead to overfitting, which could delay detection or result in an increased false-positive rate. Our multilevel SPC framework demonstrates potential to improve early detection of mean shifts in patient monitoring data, offering a refined approach to personalized healthcaremonitoring and data-driven clinical decision-making. This repository contains the simulated LVAD data used in our study on multilevel statistical process control for personalized patient monitoring. The simulations were generated using the CPAR (probability autoregressive) model across all parameter combinations. Data with shifts stored in data_with_shifts.zip file. Using the CPAR framework, we generated 25,600 distinct simulation scenarios (5 × 4 × 4 × 2 × 2 × 2 × 2 × 5 × 4 combinations of settings basedon the simulation nstudy). For each scenario, a cohort of 500 unique patients was created: 250 patients for monitoringand 250 patients from a stable cohort, randomly sampled to assess the impact of the simulation parameters. Each patient trajectory was generated uniquely for that specific scenario based on the CPAR model. Code can be accessed via HERE.
Related Topics
- Type
- dataset
- Landing Page
- https://doi.org/10.5281/zenodo.17808226
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7111035525
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7111035525Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.17808226Digital Object Identifier
- Title
-
Accompanying data for "A Multilevel statistical process control chart framework for personalized patient monitoring: A simulation study using patients historical data"Work title
- Type
-
datasetOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-03Full publication date if available
- Authors
-
Moazeni, Mehran, Aarts, EmmekeList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.17808226Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.17808226Direct OA link when available
- Concepts
-
Control chart, EWMA chart, Statistical process control, Control limits, Computer science, Calibration, Robustness (evolution), Data mining, Data set, Standard deviation, Statistics, Process (computing), Process control, Set (abstract data type), Data acquisition, Multilevel model, Sliding window protocol, Statistical model, Robust statistics, Contrast (vision), Data collection, Variance (accounting), Chart, Control (management), Count data, Data point, Data processingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7111035525 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.17808226 |
| ids.doi | https://doi.org/10.5281/zenodo.17808226 |
| ids.openalex | https://openalex.org/W7111035525 |
| fwci | |
| type | dataset |
| title | Accompanying data for "A Multilevel statistical process control chart framework for personalized patient monitoring: A simulation study using patients historical data" |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C196985124 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7697166204452515 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1369242 |
| concepts[0].display_name | Control chart |
| concepts[1].id | https://openalex.org/C74746147 |
| concepts[1].level | 4 |
| concepts[1].score | 0.7659429907798767 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5324652 |
| concepts[1].display_name | EWMA chart |
| concepts[2].id | https://openalex.org/C113644684 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6682487726211548 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1356717 |
| concepts[2].display_name | Statistical process control |
| concepts[3].id | https://openalex.org/C166623804 |
| concepts[3].level | 4 |
| concepts[3].score | 0.6322713494300842 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5165860 |
| concepts[3].display_name | Control limits |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5831462740898132 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C165838908 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4920031726360321 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q736777 |
| concepts[5].display_name | Calibration |
| concepts[6].id | https://openalex.org/C63479239 |
| concepts[6].level | 3 |
| concepts[6].score | 0.47047239542007446 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[6].display_name | Robustness (evolution) |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.45267388224601746 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C58489278 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44072049856185913 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1172284 |
| concepts[8].display_name | Data set |
| concepts[9].id | https://openalex.org/C22679943 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42334434390068054 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q159375 |
| concepts[9].display_name | Standard deviation |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3963952958583832 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C98045186 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3904932737350464 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[11].display_name | Process (computing) |
| concepts[12].id | https://openalex.org/C155386361 |
| concepts[12].level | 3 |
| concepts[12].score | 0.3427644670009613 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1649571 |
| concepts[12].display_name | Process control |
| concepts[13].id | https://openalex.org/C177264268 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3376742899417877 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[13].display_name | Set (abstract data type) |
| concepts[14].id | https://openalex.org/C163985040 |
| concepts[14].level | 2 |
| concepts[14].score | 0.31889477372169495 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1172399 |
| concepts[14].display_name | Data acquisition |
| concepts[15].id | https://openalex.org/C53059260 |
| concepts[15].level | 2 |
| concepts[15].score | 0.317369669675827 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q374758 |
| concepts[15].display_name | Multilevel model |
| concepts[16].id | https://openalex.org/C102392041 |
| concepts[16].level | 3 |
| concepts[16].score | 0.31400826573371887 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q592860 |
| concepts[16].display_name | Sliding window protocol |
| concepts[17].id | https://openalex.org/C114289077 |
| concepts[17].level | 2 |
| concepts[17].score | 0.299076646566391 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q3284399 |
| concepts[17].display_name | Statistical model |
| concepts[18].id | https://openalex.org/C67226441 |
| concepts[18].level | 3 |
| concepts[18].score | 0.2976214289665222 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1665389 |
| concepts[18].display_name | Robust statistics |
| concepts[19].id | https://openalex.org/C2776502983 |
| concepts[19].level | 2 |
| concepts[19].score | 0.2945460081100464 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q690182 |
| concepts[19].display_name | Contrast (vision) |
| concepts[20].id | https://openalex.org/C133462117 |
| concepts[20].level | 2 |
| concepts[20].score | 0.2876781225204468 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q4929239 |
| concepts[20].display_name | Data collection |
| concepts[21].id | https://openalex.org/C196083921 |
| concepts[21].level | 2 |
| concepts[21].score | 0.26971179246902466 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7915758 |
| concepts[21].display_name | Variance (accounting) |
| concepts[22].id | https://openalex.org/C190812933 |
| concepts[22].level | 2 |
| concepts[22].score | 0.26833900809288025 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q28923 |
| concepts[22].display_name | Chart |
| concepts[23].id | https://openalex.org/C2775924081 |
| concepts[23].level | 2 |
| concepts[23].score | 0.2668730318546295 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[23].display_name | Control (management) |
| concepts[24].id | https://openalex.org/C33643355 |
| concepts[24].level | 3 |
| concepts[24].score | 0.2638380825519562 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q5176731 |
| concepts[24].display_name | Count data |
| concepts[25].id | https://openalex.org/C21080849 |
| concepts[25].level | 2 |
| concepts[25].score | 0.2554575502872467 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q13611879 |
| concepts[25].display_name | Data point |
| concepts[26].id | https://openalex.org/C138827492 |
| concepts[26].level | 2 |
| concepts[26].score | 0.2551429271697998 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q6661985 |
| concepts[26].display_name | Data processing |
| keywords[0].id | https://openalex.org/keywords/control-chart |
| keywords[0].score | 0.7697166204452515 |
| keywords[0].display_name | Control chart |
| keywords[1].id | https://openalex.org/keywords/ewma-chart |
| keywords[1].score | 0.7659429907798767 |
| keywords[1].display_name | EWMA chart |
| keywords[2].id | https://openalex.org/keywords/statistical-process-control |
| keywords[2].score | 0.6682487726211548 |
| keywords[2].display_name | Statistical process control |
| keywords[3].id | https://openalex.org/keywords/control-limits |
| keywords[3].score | 0.6322713494300842 |
| keywords[3].display_name | Control limits |
| keywords[4].id | https://openalex.org/keywords/calibration |
| keywords[4].score | 0.4920031726360321 |
| keywords[4].display_name | Calibration |
| keywords[5].id | https://openalex.org/keywords/robustness |
| keywords[5].score | 0.47047239542007446 |
| keywords[5].display_name | Robustness (evolution) |
| keywords[6].id | https://openalex.org/keywords/data-set |
| keywords[6].score | 0.44072049856185913 |
| keywords[6].display_name | Data set |
| keywords[7].id | https://openalex.org/keywords/standard-deviation |
| keywords[7].score | 0.42334434390068054 |
| keywords[7].display_name | Standard deviation |
| keywords[8].id | https://openalex.org/keywords/process |
| keywords[8].score | 0.3904932737350464 |
| keywords[8].display_name | Process (computing) |
| language | |
| locations[0].id | doi:10.5281/zenodo.17808226 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.17808226 |
| indexed_in | datacite |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Moazeni, Mehran |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Moazeni, Mehran |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Aarts, Emmeke |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Aarts, Emmeke |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.17808226 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-10T00:00:00 |
| display_name | Accompanying data for "A Multilevel statistical process control chart framework for personalized patient monitoring: A simulation study using patients historical data" |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-10T02:49:46.989445 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.17808226 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.17808226 |
| primary_location.id | doi:10.5281/zenodo.17808226 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.17808226 |
| publication_date | 2025-12-03 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.2 | 337, 339, 341, 343 |
| abstract_inverted_index.4 | 333, 335, 347 |
| abstract_inverted_index.5 | 345 |
| abstract_inverted_index.A | 23 |
| abstract_inverted_index.a | 6, 93, 106, 135, 270, 358, 373 |
| abstract_inverted_index.(5 | 331 |
| abstract_inverted_index.By | 104 |
| abstract_inverted_index.In | 64 |
| abstract_inverted_index.To | 87 |
| abstract_inverted_index.an | 117, 162, 248 |
| abstract_inverted_index.as | 31, 151, 194 |
| abstract_inverted_index.be | 403 |
| abstract_inverted_index.if | 229 |
| abstract_inverted_index.in | 26, 247, 265, 288, 318 |
| abstract_inverted_index.is | 38, 48, 73 |
| abstract_inverted_index.it | 236 |
| abstract_inverted_index.of | 10, 116, 262, 349, 360, 382 |
| abstract_inverted_index.on | 171, 291, 397 |
| abstract_inverted_index.or | 245 |
| abstract_inverted_index.to | 16, 66, 82, 144, 180, 201, 239, 258, 273, 378 |
| abstract_inverted_index.we | 91, 325 |
| abstract_inverted_index.× | 332, 334, 336, 338, 340, 342, 344, 346 |
| abstract_inverted_index.250 | 366, 370 |
| abstract_inverted_index.500 | 361 |
| abstract_inverted_index.For | 355 |
| abstract_inverted_index.Our | 252 |
| abstract_inverted_index.SPC | 28, 95, 254 |
| abstract_inverted_index.The | 184, 300 |
| abstract_inverted_index.all | 311 |
| abstract_inverted_index.and | 59, 155, 199, 224, 276 |
| abstract_inverted_index.are | 158 |
| abstract_inverted_index.can | 402 |
| abstract_inverted_index.for | 50, 296, 368, 392 |
| abstract_inverted_index.its | 203 |
| abstract_inverted_index.may | 237 |
| abstract_inverted_index.our | 112, 289 |
| abstract_inverted_index.set | 84 |
| abstract_inverted_index.the | 18, 32, 56, 131, 221, 230, 283, 305, 322, 352, 380, 383, 398 |
| abstract_inverted_index.via | 161, 405 |
| abstract_inverted_index.was | 186, 364, 389 |
| abstract_inverted_index.CPAR | 306, 323, 399 |
| abstract_inverted_index.Code | 401 |
| abstract_inverted_index.Data | 314 |
| abstract_inverted_index.EWMA | 163 |
| abstract_inverted_index.Each | 386 |
| abstract_inverted_index.LVAD | 285 |
| abstract_inverted_index.This | 46, 280 |
| abstract_inverted_index.data | 15, 42, 47, 72, 100, 123, 169, 286 |
| abstract_inverted_index.each | 356 |
| abstract_inverted_index.from | 43, 101, 124, 372 |
| abstract_inverted_index.lack | 79 |
| abstract_inverted_index.lead | 238 |
| abstract_inverted_index.left | 172 |
| abstract_inverted_index.mean | 58, 133, 263 |
| abstract_inverted_index.rate | 223 |
| abstract_inverted_index.size | 198 |
| abstract_inverted_index.such | 30, 193 |
| abstract_inverted_index.that | 97, 210, 393 |
| abstract_inverted_index.then | 159 |
| abstract_inverted_index.this | 89, 182 |
| abstract_inverted_index.used | 287 |
| abstract_inverted_index.uses | 98 |
| abstract_inverted_index.were | 178, 302 |
| abstract_inverted_index.with | 109, 216, 315 |
| abstract_inverted_index.(SPC) | 3 |
| abstract_inverted_index.HERE. | 406 |
| abstract_inverted_index.Using | 321 |
| abstract_inverted_index.ample | 70 |
| abstract_inverted_index.based | 396 |
| abstract_inverted_index.could | 242 |
| abstract_inverted_index.data, | 218, 268 |
| abstract_inverted_index.delay | 243 |
| abstract_inverted_index.early | 19, 260 |
| abstract_inverted_index.false | 226 |
| abstract_inverted_index.file. | 320 |
| abstract_inverted_index.limit | 141 |
| abstract_inverted_index.long, | 235 |
| abstract_inverted_index.means | 9 |
| abstract_inverted_index.model | 108, 185, 309 |
| abstract_inverted_index.offer | 5 |
| abstract_inverted_index.often | 78 |
| abstract_inverted_index.other | 67, 125 |
| abstract_inverted_index.rate. | 251 |
| abstract_inverted_index.shift | 197 |
| abstract_inverted_index.study | 290 |
| abstract_inverted_index.these | 85 |
| abstract_inverted_index.type, | 200 |
| abstract_inverted_index.under | 205 |
| abstract_inverted_index.using | 55, 304 |
| abstract_inverted_index.where | 69 |
| abstract_inverted_index.which | 241 |
| abstract_inverted_index.(LVAD) | 176 |
| abstract_inverted_index.25,600 | 327 |
| abstract_inverted_index.Moving | 35 |
| abstract_inverted_index.across | 188, 310 |
| abstract_inverted_index.actual | 154 |
| abstract_inverted_index.assess | 202, 379 |
| abstract_inverted_index.assist | 174 |
| abstract_inverted_index.chart. | 165 |
| abstract_inverted_index.charts | 4 |
| abstract_inverted_index.cohort | 359 |
| abstract_inverted_index.device | 175 |
| abstract_inverted_index.enable | 17 |
| abstract_inverted_index.enough | 80 |
| abstract_inverted_index.fields | 68 |
| abstract_inverted_index.impact | 381 |
| abstract_inverted_index.issue, | 90 |
| abstract_inverted_index.limits | 54 |
| abstract_inverted_index.longer | 211 |
| abstract_inverted_index.method | 113 |
| abstract_inverted_index.model. | 400 |
| abstract_inverted_index.result | 246 |
| abstract_inverted_index.shifts | 264, 316 |
| abstract_inverted_index.stable | 102, 126, 374 |
| abstract_inverted_index.stored | 317 |
| abstract_inverted_index.unique | 362 |
| abstract_inverted_index.values | 157 |
| abstract_inverted_index.window | 232 |
| abstract_inverted_index.within | 134 |
| abstract_inverted_index.(EWMA), | 37 |
| abstract_inverted_index.Average | 36 |
| abstract_inverted_index.Control | 2 |
| abstract_inverted_index.Process | 1 |
| abstract_inverted_index.address | 88 |
| abstract_inverted_index.against | 121 |
| abstract_inverted_index.alarms. | 227 |
| abstract_inverted_index.arandom | 110 |
| abstract_inverted_index.basedon | 351 |
| abstract_inverted_index.becomes | 233 |
| abstract_inverted_index.between | 153 |
| abstract_inverted_index.cohort, | 375 |
| abstract_inverted_index.control | 53, 140, 164, 295 |
| abstract_inverted_index.crucial | 49 |
| abstract_inverted_index.enables | 114 |
| abstract_inverted_index.fitting | 105 |
| abstract_inverted_index.improve | 259 |
| abstract_inverted_index.limits. | 86 |
| abstract_inverted_index.modeled | 170 |
| abstract_inverted_index.patient | 13, 75, 217, 266, 298, 387 |
| abstract_inverted_index.period. | 147 |
| abstract_inverted_index.periods | 213 |
| abstract_inverted_index.phase-I | 41 |
| abstract_inverted_index.process | 294 |
| abstract_inverted_index.propose | 92 |
| abstract_inverted_index.refined | 271 |
| abstract_inverted_index.sampled | 377 |
| abstract_inverted_index.studies | 167 |
| abstract_inverted_index.systems | 77 |
| abstract_inverted_index.thereby | 219 |
| abstract_inverted_index.varying | 191 |
| abstract_inverted_index.window, | 137 |
| abstract_inverted_index.However, | 228 |
| abstract_inverted_index.Themodel | 128 |
| abstract_inverted_index.Weighted | 34 |
| abstract_inverted_index.accessed | 404 |
| abstract_inverted_index.applying | 138 |
| abstract_inverted_index.approach | 96, 272 |
| abstract_inverted_index.clinical | 278 |
| abstract_inverted_index.compared | 143 |
| abstract_inverted_index.computed | 150 |
| abstract_inverted_index.contains | 282 |
| abstract_inverted_index.contrast | 65 |
| abstract_inverted_index.created: | 365 |
| abstract_inverted_index.distinct | 139, 328 |
| abstract_inverted_index.enhanced | 214 |
| abstract_inverted_index.evaluate | 181 |
| abstract_inverted_index.expected | 57, 132 |
| abstract_inverted_index.methods, | 29 |
| abstract_inverted_index.nstudy). | 354 |
| abstract_inverted_index.offering | 269 |
| abstract_inverted_index.patients | 177, 363, 367, 371 |
| abstract_inverted_index.periods. | 63 |
| abstract_inverted_index.phase-II | 145 |
| abstract_inverted_index.randomly | 376 |
| abstract_inverted_index.reducing | 225 |
| abstract_inverted_index.sampling | 195 |
| abstract_inverted_index.scenario | 395 |
| abstract_inverted_index.settings | 350 |
| abstract_inverted_index.specific | 394 |
| abstract_inverted_index.standard | 60 |
| abstract_inverted_index.uniquely | 391 |
| abstract_inverted_index.alignment | 215 |
| abstract_inverted_index.approach. | 183 |
| abstract_inverted_index.challenge | 25 |
| abstract_inverted_index.conducted | 179 |
| abstract_inverted_index.detection | 20, 244, 261 |
| abstract_inverted_index.deviation | 61 |
| abstract_inverted_index.different | 206 |
| abstract_inverted_index.effective | 8 |
| abstract_inverted_index.estimated | 156 |
| abstract_inverted_index.estimates | 130 |
| abstract_inverted_index.evaluated | 187 |
| abstract_inverted_index.framework | 255 |
| abstract_inverted_index.generated | 303, 326, 390 |
| abstract_inverted_index.increased | 249 |
| abstract_inverted_index.monitored | 160 |
| abstract_inverted_index.obtaining | 39 |
| abstract_inverted_index.operating | 207 |
| abstract_inverted_index.parameter | 312 |
| abstract_inverted_index.patients. | 45, 127 |
| abstract_inverted_index.potential | 257 |
| abstract_inverted_index.residuals | 152 |
| abstract_inverted_index.scenario, | 357 |
| abstract_inverted_index.scenarios | 330 |
| abstract_inverted_index.simulated | 284 |
| abstract_inverted_index.subjects. | 103 |
| abstract_inverted_index.Simulation | 166 |
| abstract_inverted_index.accurately | 51 |
| abstract_inverted_index.available, | 74 |
| abstract_inverted_index.comparison | 115 |
| abstract_inverted_index.estimating | 52 |
| abstract_inverted_index.framework, | 324 |
| abstract_inverted_index.frequency, | 196 |
| abstract_inverted_index.historical | 71, 99 |
| abstract_inverted_index.increasing | 220 |
| abstract_inverted_index.individual | 44 |
| abstract_inverted_index.intercept, | 111 |
| abstract_inverted_index.monitoring | 12, 76, 146, 267 |
| abstract_inverted_index.multilevel | 94, 107, 253, 292 |
| abstract_inverted_index.ofclinical | 21 |
| abstract_inverted_index.parameters | 192 |
| abstract_inverted_index.repository | 281 |
| abstract_inverted_index.robustness | 204 |
| abstract_inverted_index.scenarios, | 190 |
| abstract_inverted_index.simulation | 329, 353, 384 |
| abstract_inverted_index.sufficient | 40 |
| abstract_inverted_index.trajectory | 388 |
| abstract_inverted_index.Statistical | 0 |
| abstract_inverted_index.calibration | 136, 212, 231 |
| abstract_inverted_index.conditions. | 208 |
| abstract_inverted_index.data-driven | 277 |
| abstract_inverted_index.deviations, | 149 |
| abstract_inverted_index.effectively | 83 |
| abstract_inverted_index.excessively | 234 |
| abstract_inverted_index.monitoring. | 299 |
| abstract_inverted_index.parameters. | 385 |
| abstract_inverted_index.potentially | 7 |
| abstract_inverted_index.recursively | 129 |
| abstract_inverted_index.significant | 24 |
| abstract_inverted_index.simulations | 301 |
| abstract_inverted_index.statistical | 293 |
| abstract_inverted_index.time-series | 14 |
| abstract_inverted_index.ventricular | 173 |
| abstract_inverted_index.(probability | 307 |
| abstract_inverted_index.coefficients | 142 |
| abstract_inverted_index.combinations | 348 |
| abstract_inverted_index.continuously | 11 |
| abstract_inverted_index.demonstrates | 256 |
| abstract_inverted_index.duringstable | 62 |
| abstract_inverted_index.implementing | 27 |
| abstract_inverted_index.longitudinal | 119 |
| abstract_inverted_index.measurements | 120 |
| abstract_inverted_index.observations | 81 |
| abstract_inverted_index.overfitting, | 240 |
| abstract_inverted_index.personalized | 274, 297 |
| abstract_inverted_index.Exponentially | 33 |
| abstract_inverted_index.Resultsshowed | 209 |
| abstract_inverted_index.combinations. | 313 |
| abstract_inverted_index.monitoringand | 369 |
| abstract_inverted_index.true-positive | 222 |
| abstract_inverted_index.abnormalities. | 22 |
| abstract_inverted_index.false-positive | 250 |
| abstract_inverted_index.individual’s | 118 |
| abstract_inverted_index.usingsynthetic | 168 |
| abstract_inverted_index.Person-specific | 148 |
| abstract_inverted_index.autoregressive) | 308 |
| abstract_inverted_index.cross-sectional | 122 |
| abstract_inverted_index.decision-making. | 279 |
| abstract_inverted_index.multiplesimulation | 189 |
| abstract_inverted_index.data_with_shifts.zip | 319 |
| abstract_inverted_index.healthcaremonitoring | 275 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |