Accumulation-based Runoff and Pluvial Flood Estimation Tool Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5194/egusphere-2025-4447
Knowledge about spatially distributed inundation depth and overland flow quantities, as well as related flow velocities, is critical information for establishing a pluvial flood forecasting system and the related disaster management. This kind of information is often derived from computationally demanding simulations with 2-dimensional hydrodynamic models, limiting the number of scenarios for which information can be provided and challenging real-time forecasting. To address this gap, we developed the model AccRo (Accumulation-based Runoff and Flooding), which is a computationally efficient method to derive maximum inundation depth, maximum flow velocity and maximum specific discharge of a flood event at larger spatial scales, based on an improved flow accumulation method to better represent the spatial extent of inundated areas. To assess the quality of AccRo, we compare the results from the AccRo model with the results of two different state-of-the-art 2-dimensional hydrodynamic models for design cases as well as real-world pluvial flood examples. We find that AccRo is able to represent both, the analytical solution for the design cases and the simulations of the hydrodynamic models in the real-world example in high quality, well within the range of the two hydrodynamic models. In combination with the low computational requirements, we conclude that AccRo is a valuable tool for assessing pluvial flood hazards.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5194/egusphere-2025-4447
- https://egusphere.copernicus.org/preprints/2025/egusphere-2025-4447/egusphere-2025-4447.pdf
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4414979220
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414979220Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/egusphere-2025-4447Digital Object Identifier
- Title
-
Accumulation-based Runoff and Pluvial Flood Estimation ToolWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-09Full publication date if available
- Authors
-
Hannes Leistert, Andreas Haensler, Max Schmit, Andreas Steinbrich, Markus WeilerList of authors in order
- Landing page
-
https://doi.org/10.5194/egusphere-2025-4447Publisher landing page
- PDF URL
-
https://egusphere.copernicus.org/preprints/2025/egusphere-2025-4447/egusphere-2025-4447.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://egusphere.copernicus.org/preprints/2025/egusphere-2025-4447/egusphere-2025-4447.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414979220 |
|---|---|
| doi | https://doi.org/10.5194/egusphere-2025-4447 |
| ids.doi | https://doi.org/10.5194/egusphere-2025-4447 |
| ids.openalex | https://openalex.org/W4414979220 |
| fwci | 0.0 |
| type | article |
| title | Accumulation-based Runoff and Pluvial Flood Estimation Tool |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10330 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9889000058174133 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2312 |
| topics[0].subfield.display_name | Water Science and Technology |
| topics[0].display_name | Hydrology and Watershed Management Studies |
| topics[1].id | https://openalex.org/T11490 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9661999940872192 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Hydrological Forecasting Using AI |
| topics[2].id | https://openalex.org/T10930 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9483000040054321 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2306 |
| topics[2].subfield.display_name | Global and Planetary Change |
| topics[2].display_name | Flood Risk Assessment and Management |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.5194/egusphere-2025-4447 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://egusphere.copernicus.org/preprints/2025/egusphere-2025-4447/egusphere-2025-4447.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5194/egusphere-2025-4447 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5034246417 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Hannes Leistert |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hannes Leistert |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5057045602 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3471-7523 |
| authorships[1].author.display_name | Andreas Haensler |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Andreas Hänsler |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5051968395 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0712-4116 |
| authorships[2].author.display_name | Max Schmit |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Max Schmit |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5051052692 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1756-4107 |
| authorships[3].author.display_name | Andreas Steinbrich |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Andreas Steinbrich |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5067442586 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6245-6917 |
| authorships[4].author.display_name | Markus Weiler |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Markus Weiler |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://egusphere.copernicus.org/preprints/2025/egusphere-2025-4447/egusphere-2025-4447.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Accumulation-based Runoff and Pluvial Flood Estimation Tool |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10330 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9889000058174133 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2312 |
| primary_topic.subfield.display_name | Water Science and Technology |
| primary_topic.display_name | Hydrology and Watershed Management Studies |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5194/egusphere-2025-4447 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://egusphere.copernicus.org/preprints/2025/egusphere-2025-4447/egusphere-2025-4447.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5194/egusphere-2025-4447 |
| primary_location.id | doi:10.5194/egusphere-2025-4447 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://egusphere.copernicus.org/preprints/2025/egusphere-2025-4447/egusphere-2025-4447.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5194/egusphere-2025-4447 |
| publication_date | 2025-10-09 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 22, 77, 94, 202 |
| abstract_inverted_index.In | 190 |
| abstract_inverted_index.To | 62, 117 |
| abstract_inverted_index.We | 151 |
| abstract_inverted_index.an | 103 |
| abstract_inverted_index.as | 11, 13, 144, 146 |
| abstract_inverted_index.at | 97 |
| abstract_inverted_index.be | 56 |
| abstract_inverted_index.in | 174, 178 |
| abstract_inverted_index.is | 17, 36, 76, 155, 201 |
| abstract_inverted_index.of | 34, 50, 93, 114, 121, 134, 170, 185 |
| abstract_inverted_index.on | 102 |
| abstract_inverted_index.to | 81, 108, 157 |
| abstract_inverted_index.we | 66, 123, 197 |
| abstract_inverted_index.and | 7, 27, 58, 73, 89, 167 |
| abstract_inverted_index.can | 55 |
| abstract_inverted_index.for | 20, 52, 141, 163, 205 |
| abstract_inverted_index.low | 194 |
| abstract_inverted_index.the | 28, 48, 68, 111, 119, 125, 128, 132, 160, 164, 168, 171, 175, 183, 186, 193 |
| abstract_inverted_index.two | 135, 187 |
| abstract_inverted_index.This | 32 |
| abstract_inverted_index.able | 156 |
| abstract_inverted_index.find | 152 |
| abstract_inverted_index.flow | 9, 15, 87, 105 |
| abstract_inverted_index.from | 39, 127 |
| abstract_inverted_index.gap, | 65 |
| abstract_inverted_index.high | 179 |
| abstract_inverted_index.kind | 33 |
| abstract_inverted_index.that | 153, 199 |
| abstract_inverted_index.this | 64 |
| abstract_inverted_index.tool | 204 |
| abstract_inverted_index.well | 12, 145, 181 |
| abstract_inverted_index.with | 43, 131, 192 |
| abstract_inverted_index.AccRo | 70, 129, 154, 200 |
| abstract_inverted_index.about | 2 |
| abstract_inverted_index.based | 101 |
| abstract_inverted_index.both, | 159 |
| abstract_inverted_index.cases | 143, 166 |
| abstract_inverted_index.depth | 6 |
| abstract_inverted_index.event | 96 |
| abstract_inverted_index.flood | 24, 95, 149, 208 |
| abstract_inverted_index.model | 69, 130 |
| abstract_inverted_index.often | 37 |
| abstract_inverted_index.range | 184 |
| abstract_inverted_index.which | 53, 75 |
| abstract_inverted_index.AccRo, | 122 |
| abstract_inverted_index.Runoff | 72 |
| abstract_inverted_index.areas. | 116 |
| abstract_inverted_index.assess | 118 |
| abstract_inverted_index.better | 109 |
| abstract_inverted_index.depth, | 85 |
| abstract_inverted_index.derive | 82 |
| abstract_inverted_index.design | 142, 165 |
| abstract_inverted_index.extent | 113 |
| abstract_inverted_index.larger | 98 |
| abstract_inverted_index.method | 80, 107 |
| abstract_inverted_index.models | 140, 173 |
| abstract_inverted_index.number | 49 |
| abstract_inverted_index.system | 26 |
| abstract_inverted_index.within | 182 |
| abstract_inverted_index.address | 63 |
| abstract_inverted_index.compare | 124 |
| abstract_inverted_index.derived | 38 |
| abstract_inverted_index.example | 177 |
| abstract_inverted_index.maximum | 83, 86, 90 |
| abstract_inverted_index.models, | 46 |
| abstract_inverted_index.models. | 189 |
| abstract_inverted_index.pluvial | 23, 148, 207 |
| abstract_inverted_index.quality | 120 |
| abstract_inverted_index.related | 14, 29 |
| abstract_inverted_index.results | 126, 133 |
| abstract_inverted_index.scales, | 100 |
| abstract_inverted_index.spatial | 99, 112 |
| abstract_inverted_index.conclude | 198 |
| abstract_inverted_index.critical | 18 |
| abstract_inverted_index.disaster | 30 |
| abstract_inverted_index.hazards. | 209 |
| abstract_inverted_index.improved | 104 |
| abstract_inverted_index.limiting | 47 |
| abstract_inverted_index.overland | 8 |
| abstract_inverted_index.provided | 57 |
| abstract_inverted_index.quality, | 180 |
| abstract_inverted_index.solution | 162 |
| abstract_inverted_index.specific | 91 |
| abstract_inverted_index.valuable | 203 |
| abstract_inverted_index.velocity | 88 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.Knowledge | 1 |
| abstract_inverted_index.assessing | 206 |
| abstract_inverted_index.demanding | 41 |
| abstract_inverted_index.developed | 67 |
| abstract_inverted_index.different | 136 |
| abstract_inverted_index.discharge | 92 |
| abstract_inverted_index.efficient | 79 |
| abstract_inverted_index.examples. | 150 |
| abstract_inverted_index.inundated | 115 |
| abstract_inverted_index.real-time | 60 |
| abstract_inverted_index.represent | 110, 158 |
| abstract_inverted_index.scenarios | 51 |
| abstract_inverted_index.spatially | 3 |
| abstract_inverted_index.Flooding), | 74 |
| abstract_inverted_index.analytical | 161 |
| abstract_inverted_index.inundation | 5, 84 |
| abstract_inverted_index.real-world | 147, 176 |
| abstract_inverted_index.challenging | 59 |
| abstract_inverted_index.combination | 191 |
| abstract_inverted_index.distributed | 4 |
| abstract_inverted_index.forecasting | 25 |
| abstract_inverted_index.information | 19, 35, 54 |
| abstract_inverted_index.management. | 31 |
| abstract_inverted_index.quantities, | 10 |
| abstract_inverted_index.simulations | 42, 169 |
| abstract_inverted_index.velocities, | 16 |
| abstract_inverted_index.accumulation | 106 |
| abstract_inverted_index.establishing | 21 |
| abstract_inverted_index.forecasting. | 61 |
| abstract_inverted_index.hydrodynamic | 45, 139, 172, 188 |
| abstract_inverted_index.2-dimensional | 44, 138 |
| abstract_inverted_index.computational | 195 |
| abstract_inverted_index.requirements, | 196 |
| abstract_inverted_index.computationally | 40, 78 |
| abstract_inverted_index.state-of-the-art | 137 |
| abstract_inverted_index.(Accumulation-based | 71 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.45113493 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |