Accumulation Bit-Width Scaling For Ultra-Low Precision Training Of Deep Networks Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1901.06588
Efforts to reduce the numerical precision of computations in deep learning training have yielded systems that aggressively quantize weights and activations, yet employ wide high-precision accumulators for partial sums in inner-product operations to preserve the quality of convergence. The absence of any framework to analyze the precision requirements of partial sum accumulations results in conservative design choices. This imposes an upper-bound on the reduction of complexity of multiply-accumulate units. We present a statistical approach to analyze the impact of reduced accumulation precision on deep learning training. Observing that a bad choice for accumulation precision results in loss of information that manifests itself as a reduction in variance in an ensemble of partial sums, we derive a set of equations that relate this variance to the length of accumulation and the minimum number of bits needed for accumulation. We apply our analysis to three benchmark networks: CIFAR-10 ResNet 32, ImageNet ResNet 18 and ImageNet AlexNet. In each case, with accumulation precision set in accordance with our proposed equations, the networks successfully converge to the single precision floating-point baseline. We also show that reducing accumulation precision further degrades the quality of the trained network, proving that our equations produce tight bounds. Overall this analysis enables precise tailoring of computation hardware to the application, yielding area- and power-optimal systems.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1901.06588
- https://arxiv.org/pdf/1901.06588
- OA Status
- green
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2912180158
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2912180158Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1901.06588Digital Object Identifier
- Title
-
Accumulation Bit-Width Scaling For Ultra-Low Precision Training Of Deep NetworksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-19Full publication date if available
- Authors
-
Charbel Sakr, Naigang Wang, Chia‐Yu Chen, Jungwook Choi, Ankur Agrawal, Naresh R. Shanbhag, Kailash GopalakrishnanList of authors in order
- Landing page
-
https://arxiv.org/abs/1901.06588Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1901.06588Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1901.06588Direct OA link when available
- Concepts
-
Benchmark (surveying), Computer science, Computation, Convergence (economics), Variance (accounting), Set (abstract data type), Reduction (mathematics), Algorithm, Variance reduction, Scaling, Deep learning, Computer engineering, Artificial intelligence, Monte Carlo method, Mathematics, Statistics, Accounting, Geography, Economic growth, Business, Economics, Programming language, Geodesy, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2912180158 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1901.06588 |
| ids.doi | https://doi.org/10.48550/arxiv.1901.06588 |
| ids.mag | 2912180158 |
| ids.openalex | https://openalex.org/W2912180158 |
| fwci | |
| type | preprint |
| title | Accumulation Bit-Width Scaling For Ultra-Low Precision Training Of Deep Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9961000084877014 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T12072 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9869999885559082 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Algorithms |
| topics[2].id | https://openalex.org/T10052 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9764000177383423 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Medical Image Segmentation Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C185798385 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7222636342048645 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[0].display_name | Benchmark (surveying) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7190945148468018 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C45374587 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5788069367408752 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[2].display_name | Computation |
| concepts[3].id | https://openalex.org/C2777303404 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5681020617485046 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[3].display_name | Convergence (economics) |
| concepts[4].id | https://openalex.org/C196083921 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5552449226379395 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7915758 |
| concepts[4].display_name | Variance (accounting) |
| concepts[5].id | https://openalex.org/C177264268 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5531225204467773 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[5].display_name | Set (abstract data type) |
| concepts[6].id | https://openalex.org/C111335779 |
| concepts[6].level | 2 |
| concepts[6].score | 0.548845648765564 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3454686 |
| concepts[6].display_name | Reduction (mathematics) |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5315344929695129 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C62644790 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4893800616264343 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3454689 |
| concepts[8].display_name | Variance reduction |
| concepts[9].id | https://openalex.org/C99844830 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4552118480205536 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q102441924 |
| concepts[9].display_name | Scaling |
| concepts[10].id | https://openalex.org/C108583219 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42108145356178284 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[10].display_name | Deep learning |
| concepts[11].id | https://openalex.org/C113775141 |
| concepts[11].level | 1 |
| concepts[11].score | 0.33620208501815796 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q428691 |
| concepts[11].display_name | Computer engineering |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3361746072769165 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C19499675 |
| concepts[13].level | 2 |
| concepts[13].score | 0.21661034226417542 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[13].display_name | Monte Carlo method |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.20981448888778687 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.1312398612499237 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C121955636 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q4116214 |
| concepts[16].display_name | Accounting |
| concepts[17].id | https://openalex.org/C205649164 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[17].display_name | Geography |
| concepts[18].id | https://openalex.org/C50522688 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[18].display_name | Economic growth |
| concepts[19].id | https://openalex.org/C144133560 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[19].display_name | Business |
| concepts[20].id | https://openalex.org/C162324750 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[20].display_name | Economics |
| concepts[21].id | https://openalex.org/C199360897 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[21].display_name | Programming language |
| concepts[22].id | https://openalex.org/C13280743 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[22].display_name | Geodesy |
| concepts[23].id | https://openalex.org/C2524010 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[23].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/benchmark |
| keywords[0].score | 0.7222636342048645 |
| keywords[0].display_name | Benchmark (surveying) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7190945148468018 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/computation |
| keywords[2].score | 0.5788069367408752 |
| keywords[2].display_name | Computation |
| keywords[3].id | https://openalex.org/keywords/convergence |
| keywords[3].score | 0.5681020617485046 |
| keywords[3].display_name | Convergence (economics) |
| keywords[4].id | https://openalex.org/keywords/variance |
| keywords[4].score | 0.5552449226379395 |
| keywords[4].display_name | Variance (accounting) |
| keywords[5].id | https://openalex.org/keywords/set |
| keywords[5].score | 0.5531225204467773 |
| keywords[5].display_name | Set (abstract data type) |
| keywords[6].id | https://openalex.org/keywords/reduction |
| keywords[6].score | 0.548845648765564 |
| keywords[6].display_name | Reduction (mathematics) |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.5315344929695129 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/variance-reduction |
| keywords[8].score | 0.4893800616264343 |
| keywords[8].display_name | Variance reduction |
| keywords[9].id | https://openalex.org/keywords/scaling |
| keywords[9].score | 0.4552118480205536 |
| keywords[9].display_name | Scaling |
| keywords[10].id | https://openalex.org/keywords/deep-learning |
| keywords[10].score | 0.42108145356178284 |
| keywords[10].display_name | Deep learning |
| keywords[11].id | https://openalex.org/keywords/computer-engineering |
| keywords[11].score | 0.33620208501815796 |
| keywords[11].display_name | Computer engineering |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.3361746072769165 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[13].score | 0.21661034226417542 |
| keywords[13].display_name | Monte Carlo method |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.20981448888778687 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/statistics |
| keywords[15].score | 0.1312398612499237 |
| keywords[15].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1901.06588 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1901.06588 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1901.06588 |
| locations[1].id | mag:2912180158 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | https://arxiv.org/pdf/1901.06588 |
| locations[2].id | doi:10.48550/arxiv.1901.06588 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.1901.06588 |
| locations[3].id | mag:2963131426 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | arXiv (Cornell University) |
| locations[3].landing_page_url | https://arxiv.org/pdf/1901.06588.pdf |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5047303294 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5641-0541 |
| authorships[0].author.display_name | Charbel Sakr |
| authorships[0].countries | US |
| authorships[0].affiliations[0].raw_affiliation_string | IBM Research |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I157725225 |
| authorships[0].affiliations[1].raw_affiliation_string | University of Illinois at Urbana-Champaign |
| authorships[0].institutions[0].id | https://openalex.org/I157725225 |
| authorships[0].institutions[0].ror | https://ror.org/047426m28 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I157725225 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Illinois Urbana-Champaign |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Charbel Sakr |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | IBM Research, University of Illinois at Urbana-Champaign |
| authorships[1].author.id | https://openalex.org/A5082043392 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7664-0061 |
| authorships[1].author.display_name | Naigang Wang |
| authorships[1].affiliations[0].raw_affiliation_string | IBM |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Naigang Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | IBM |
| authorships[2].author.id | https://openalex.org/A5101406569 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5542-7149 |
| authorships[2].author.display_name | Chia‐Yu Chen |
| authorships[2].affiliations[0].raw_affiliation_string | IBM |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chia-Yu Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | IBM |
| authorships[3].author.id | https://openalex.org/A5078440061 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3075-8694 |
| authorships[3].author.display_name | Jungwook Choi |
| authorships[3].affiliations[0].raw_affiliation_string | DEPARTMENT OF ELECTRONIC ENGINEERING |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jungwook Choi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | DEPARTMENT OF ELECTRONIC ENGINEERING |
| authorships[4].author.id | https://openalex.org/A5103063911 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4389-5911 |
| authorships[4].author.display_name | Ankur Agrawal |
| authorships[4].affiliations[0].raw_affiliation_string | IBM |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ankur Agrawal |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | IBM |
| authorships[5].author.id | https://openalex.org/A5057014407 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4323-9164 |
| authorships[5].author.display_name | Naresh R. Shanbhag |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I157725225 |
| authorships[5].affiliations[0].raw_affiliation_string | ***University of Illinois at Urbana-Champaign |
| authorships[5].institutions[0].id | https://openalex.org/I157725225 |
| authorships[5].institutions[0].ror | https://ror.org/047426m28 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I157725225 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Illinois Urbana-Champaign |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Naresh Shanbhag |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | ***University of Illinois at Urbana-Champaign |
| authorships[6].author.id | https://openalex.org/A5101429456 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8952-0875 |
| authorships[6].author.display_name | Kailash Gopalakrishnan |
| authorships[6].affiliations[0].raw_affiliation_string | IBM |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Kailash Gopalakrishnan |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | IBM |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1901.06588 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Accumulation Bit-Width Scaling For Ultra-Low Precision Training Of Deep Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9961000084877014 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2963131426, https://openalex.org/W2890616119, https://openalex.org/W2946955515, https://openalex.org/W2763421725, https://openalex.org/W2890770683, https://openalex.org/W2584314014, https://openalex.org/W3120250747, https://openalex.org/W2944508492, https://openalex.org/W3133264013, https://openalex.org/W2994782216, https://openalex.org/W2940542208, https://openalex.org/W3129181244, https://openalex.org/W3040522390, https://openalex.org/W3008507360, https://openalex.org/W2964472257, https://openalex.org/W3173842498, https://openalex.org/W3123666279, https://openalex.org/W2799243248, https://openalex.org/W2726743825, https://openalex.org/W2737685714 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:arXiv.org:1901.06588 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1901.06588 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1901.06588 |
| primary_location.id | pmh:oai:arXiv.org:1901.06588 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1901.06588 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1901.06588 |
| publication_date | 2019-01-19 |
| publication_year | 2019 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 71, 88, 103, 115 |
| abstract_inverted_index.18 | 150 |
| abstract_inverted_index.In | 154 |
| abstract_inverted_index.We | 69, 137, 177 |
| abstract_inverted_index.an | 59, 108 |
| abstract_inverted_index.as | 102 |
| abstract_inverted_index.in | 8, 29, 53, 95, 105, 107, 161 |
| abstract_inverted_index.of | 6, 36, 40, 48, 64, 66, 78, 97, 110, 117, 126, 132, 188, 205 |
| abstract_inverted_index.on | 61, 82 |
| abstract_inverted_index.to | 1, 32, 43, 74, 123, 141, 171, 208 |
| abstract_inverted_index.we | 113 |
| abstract_inverted_index.32, | 147 |
| abstract_inverted_index.The | 38 |
| abstract_inverted_index.and | 19, 128, 151, 213 |
| abstract_inverted_index.any | 41 |
| abstract_inverted_index.bad | 89 |
| abstract_inverted_index.for | 26, 91, 135 |
| abstract_inverted_index.our | 139, 164, 194 |
| abstract_inverted_index.set | 116, 160 |
| abstract_inverted_index.sum | 50 |
| abstract_inverted_index.the | 3, 34, 45, 62, 76, 124, 129, 167, 172, 186, 189, 209 |
| abstract_inverted_index.yet | 21 |
| abstract_inverted_index.This | 57 |
| abstract_inverted_index.also | 178 |
| abstract_inverted_index.bits | 133 |
| abstract_inverted_index.deep | 9, 83 |
| abstract_inverted_index.each | 155 |
| abstract_inverted_index.have | 12 |
| abstract_inverted_index.loss | 96 |
| abstract_inverted_index.show | 179 |
| abstract_inverted_index.sums | 28 |
| abstract_inverted_index.that | 15, 87, 99, 119, 180, 193 |
| abstract_inverted_index.this | 121, 200 |
| abstract_inverted_index.wide | 23 |
| abstract_inverted_index.with | 157, 163 |
| abstract_inverted_index.apply | 138 |
| abstract_inverted_index.area- | 212 |
| abstract_inverted_index.case, | 156 |
| abstract_inverted_index.sums, | 112 |
| abstract_inverted_index.three | 142 |
| abstract_inverted_index.tight | 197 |
| abstract_inverted_index.ResNet | 146, 149 |
| abstract_inverted_index.choice | 90 |
| abstract_inverted_index.derive | 114 |
| abstract_inverted_index.design | 55 |
| abstract_inverted_index.employ | 22 |
| abstract_inverted_index.impact | 77 |
| abstract_inverted_index.itself | 101 |
| abstract_inverted_index.length | 125 |
| abstract_inverted_index.needed | 134 |
| abstract_inverted_index.number | 131 |
| abstract_inverted_index.reduce | 2 |
| abstract_inverted_index.relate | 120 |
| abstract_inverted_index.single | 173 |
| abstract_inverted_index.units. | 68 |
| abstract_inverted_index.Efforts | 0 |
| abstract_inverted_index.Overall | 199 |
| abstract_inverted_index.absence | 39 |
| abstract_inverted_index.analyze | 44, 75 |
| abstract_inverted_index.bounds. | 198 |
| abstract_inverted_index.enables | 202 |
| abstract_inverted_index.further | 184 |
| abstract_inverted_index.imposes | 58 |
| abstract_inverted_index.minimum | 130 |
| abstract_inverted_index.partial | 27, 49, 111 |
| abstract_inverted_index.precise | 203 |
| abstract_inverted_index.present | 70 |
| abstract_inverted_index.produce | 196 |
| abstract_inverted_index.proving | 192 |
| abstract_inverted_index.quality | 35, 187 |
| abstract_inverted_index.reduced | 79 |
| abstract_inverted_index.results | 52, 94 |
| abstract_inverted_index.systems | 14 |
| abstract_inverted_index.trained | 190 |
| abstract_inverted_index.weights | 18 |
| abstract_inverted_index.yielded | 13 |
| abstract_inverted_index.AlexNet. | 153 |
| abstract_inverted_index.CIFAR-10 | 145 |
| abstract_inverted_index.ImageNet | 148, 152 |
| abstract_inverted_index.analysis | 140, 201 |
| abstract_inverted_index.approach | 73 |
| abstract_inverted_index.choices. | 56 |
| abstract_inverted_index.converge | 170 |
| abstract_inverted_index.degrades | 185 |
| abstract_inverted_index.ensemble | 109 |
| abstract_inverted_index.hardware | 207 |
| abstract_inverted_index.learning | 10, 84 |
| abstract_inverted_index.network, | 191 |
| abstract_inverted_index.networks | 168 |
| abstract_inverted_index.preserve | 33 |
| abstract_inverted_index.proposed | 165 |
| abstract_inverted_index.quantize | 17 |
| abstract_inverted_index.reducing | 181 |
| abstract_inverted_index.systems. | 215 |
| abstract_inverted_index.training | 11 |
| abstract_inverted_index.variance | 106, 122 |
| abstract_inverted_index.yielding | 211 |
| abstract_inverted_index.Observing | 86 |
| abstract_inverted_index.baseline. | 176 |
| abstract_inverted_index.benchmark | 143 |
| abstract_inverted_index.equations | 118, 195 |
| abstract_inverted_index.framework | 42 |
| abstract_inverted_index.manifests | 100 |
| abstract_inverted_index.networks: | 144 |
| abstract_inverted_index.numerical | 4 |
| abstract_inverted_index.precision | 5, 46, 81, 93, 159, 174, 183 |
| abstract_inverted_index.reduction | 63, 104 |
| abstract_inverted_index.tailoring | 204 |
| abstract_inverted_index.training. | 85 |
| abstract_inverted_index.accordance | 162 |
| abstract_inverted_index.complexity | 65 |
| abstract_inverted_index.equations, | 166 |
| abstract_inverted_index.operations | 31 |
| abstract_inverted_index.computation | 206 |
| abstract_inverted_index.information | 98 |
| abstract_inverted_index.statistical | 72 |
| abstract_inverted_index.upper-bound | 60 |
| abstract_inverted_index.accumulation | 80, 92, 127, 158, 182 |
| abstract_inverted_index.accumulators | 25 |
| abstract_inverted_index.activations, | 20 |
| abstract_inverted_index.aggressively | 16 |
| abstract_inverted_index.application, | 210 |
| abstract_inverted_index.computations | 7 |
| abstract_inverted_index.conservative | 54 |
| abstract_inverted_index.convergence. | 37 |
| abstract_inverted_index.requirements | 47 |
| abstract_inverted_index.successfully | 169 |
| abstract_inverted_index.accumulation. | 136 |
| abstract_inverted_index.accumulations | 51 |
| abstract_inverted_index.inner-product | 30 |
| abstract_inverted_index.power-optimal | 214 |
| abstract_inverted_index.floating-point | 175 |
| abstract_inverted_index.high-precision | 24 |
| abstract_inverted_index.multiply-accumulate | 67 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |