Accuracy Assessment of Digital Terrain Models of Lowland Pedunculate Oak Forests Derived from Airborne Laser Scanning and Photogrammetry Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.13140/rg.2.2.28926.48962
Digital terrain models (DTMs) present important data source for different applications in environmental disciplines including forestry. At regional level, DTMs are commonly created using airborne digital photogrammetry or airborne laser scanning (ALS) technology. This study aims to evaluate the vertical accuracy of DTMs of different spatial resolutions derived from high-density ALS data and existing photogrammetric (PHM) data in the dense lowland even-aged pedunculate oak forests located in the Pokupsko basin in Central Croatia. As expected, the assessment of DTMs’ vertical accuracy using 22 ground checkpoints shows higher accuracy for ALS-derived than for PHM-derived DTMs. Concerning the different resolutions of ALS-derived (0.5 m, 1 m, 2 m, 5 m) and PHM-derived DTMs (0.5 m, 1 m, 2 m, 5 m, 8 m) compared in this research, the ALS-derived DTM with the finest resolution of 0.5 m shows the highest accuracy. The root mean square error (RMSE) and mean error (ME) values for ALS-derived DTMs range from 0.14 m to 0.15 m and from 0.09 to 0.12 m, respectively, and the values decrease with decreasing spatial resolution. For the PHM-derived DTMs, the RMSE and ME values are almost identical regardless of resolution and they are 0.35 m and 0.17 m, respectively. The findings suggest that the 8 m spatial resolution is optimal for a given photogrammetric data, and no finer than 8 m spatial resolution is required. This research also reveals that the national digital photogrammetric data in the study area contain certain errors (outliers) specific to the terrain type, which could considerably affect the DTM accuracy. Thus, preliminary evaluation of photogrammetric data should be done to eliminate possible outliers prior to the DTM generation in lowland forests with flat terrain. In the absence of ALS data, the finding in this research could be of interests to countries, which still rely on similar photogrammetric data for DTM generation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doaj.org/article/45fbe83bb01e4035bd4f4a6f6cf1988b
- OA Status
- green
- Cited By
- 16
- References
- 8
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2788113738
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2788113738Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.13140/rg.2.2.28926.48962Digital Object Identifier
- Title
-
Accuracy Assessment of Digital Terrain Models of Lowland Pedunculate Oak Forests Derived from Airborne Laser Scanning and PhotogrammetryWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-01-01Full publication date if available
- Authors
-
Ivan Balenović, Mateo Gašparović, Anita Šimić Milas, Alen Berta, Ante SeletkovićList of authors in order
- Landing page
-
https://doaj.org/article/45fbe83bb01e4035bd4f4a6f6cf1988bPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doaj.org/article/45fbe83bb01e4035bd4f4a6f6cf1988bDirect OA link when available
- Concepts
-
Photogrammetry, Terrain, Laser scanning, Remote sensing, Environmental science, Forestry, Geology, Laser, Geography, Cartography, Optics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
16Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2022: 1, 2021: 3, 2020: 4, 2019: 4Per-year citation counts (last 5 years)
- References (count)
-
8Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2788113738 |
|---|---|
| doi | https://doi.org/10.13140/rg.2.2.28926.48962 |
| ids.doi | https://doi.org/10.13140/rg.2.2.28926.48962 |
| ids.mag | 2788113738 |
| ids.openalex | https://openalex.org/W2788113738 |
| fwci | 1.71866775 |
| type | article |
| title | Accuracy Assessment of Digital Terrain Models of Lowland Pedunculate Oak Forests Derived from Airborne Laser Scanning and Photogrammetry |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11164 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Remote Sensing and LiDAR Applications |
| topics[1].id | https://openalex.org/T11880 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9970999956130981 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2309 |
| topics[1].subfield.display_name | Nature and Landscape Conservation |
| topics[1].display_name | Forest ecology and management |
| topics[2].id | https://openalex.org/T11211 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9923999905586243 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1907 |
| topics[2].subfield.display_name | Geology |
| topics[2].display_name | 3D Surveying and Cultural Heritage |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C117455697 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7705705165863037 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q190149 |
| concepts[0].display_name | Photogrammetry |
| concepts[1].id | https://openalex.org/C161840515 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7142899036407471 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q186131 |
| concepts[1].display_name | Terrain |
| concepts[2].id | https://openalex.org/C141349535 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6788740158081055 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1361664 |
| concepts[2].display_name | Laser scanning |
| concepts[3].id | https://openalex.org/C62649853 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5508655309677124 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[3].display_name | Remote sensing |
| concepts[4].id | https://openalex.org/C39432304 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4581730365753174 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[4].display_name | Environmental science |
| concepts[5].id | https://openalex.org/C97137747 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3831619918346405 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q38112 |
| concepts[5].display_name | Forestry |
| concepts[6].id | https://openalex.org/C127313418 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3780190646648407 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[6].display_name | Geology |
| concepts[7].id | https://openalex.org/C520434653 |
| concepts[7].level | 2 |
| concepts[7].score | 0.28762203454971313 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q38867 |
| concepts[7].display_name | Laser |
| concepts[8].id | https://openalex.org/C205649164 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2528826594352722 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[8].display_name | Geography |
| concepts[9].id | https://openalex.org/C58640448 |
| concepts[9].level | 1 |
| concepts[9].score | 0.14107096195220947 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[9].display_name | Cartography |
| concepts[10].id | https://openalex.org/C120665830 |
| concepts[10].level | 1 |
| concepts[10].score | 0.07796216011047363 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[10].display_name | Optics |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.04646041989326477 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/photogrammetry |
| keywords[0].score | 0.7705705165863037 |
| keywords[0].display_name | Photogrammetry |
| keywords[1].id | https://openalex.org/keywords/terrain |
| keywords[1].score | 0.7142899036407471 |
| keywords[1].display_name | Terrain |
| keywords[2].id | https://openalex.org/keywords/laser-scanning |
| keywords[2].score | 0.6788740158081055 |
| keywords[2].display_name | Laser scanning |
| keywords[3].id | https://openalex.org/keywords/remote-sensing |
| keywords[3].score | 0.5508655309677124 |
| keywords[3].display_name | Remote sensing |
| keywords[4].id | https://openalex.org/keywords/environmental-science |
| keywords[4].score | 0.4581730365753174 |
| keywords[4].display_name | Environmental science |
| keywords[5].id | https://openalex.org/keywords/forestry |
| keywords[5].score | 0.3831619918346405 |
| keywords[5].display_name | Forestry |
| keywords[6].id | https://openalex.org/keywords/geology |
| keywords[6].score | 0.3780190646648407 |
| keywords[6].display_name | Geology |
| keywords[7].id | https://openalex.org/keywords/laser |
| keywords[7].score | 0.28762203454971313 |
| keywords[7].display_name | Laser |
| keywords[8].id | https://openalex.org/keywords/geography |
| keywords[8].score | 0.2528826594352722 |
| keywords[8].display_name | Geography |
| keywords[9].id | https://openalex.org/keywords/cartography |
| keywords[9].score | 0.14107096195220947 |
| keywords[9].display_name | Cartography |
| keywords[10].id | https://openalex.org/keywords/optics |
| keywords[10].score | 0.07796216011047363 |
| keywords[10].display_name | Optics |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.04646041989326477 |
| keywords[11].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:doaj.org/article:45fbe83bb01e4035bd4f4a6f6cf1988b |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306401280 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | Croatian Journal of Forest Engineering, Vol 39, Iss 1, Pp 117-128 (2018) |
| locations[0].landing_page_url | https://doaj.org/article/45fbe83bb01e4035bd4f4a6f6cf1988b |
| locations[1].id | doi:10.13140/rg.2.2.28926.48962 |
| locations[1].is_oa | True |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.13140/rg.2.2.28926.48962 |
| indexed_in | datacite, doaj |
| authorships[0].author.id | https://openalex.org/A5061875476 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7422-753X |
| authorships[0].author.display_name | Ivan Balenović |
| authorships[0].countries | HR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210158666 |
| authorships[0].affiliations[0].raw_affiliation_string | Division for Forest Management and Forestry Economics Croatian Forest Research Institute Trnjanska cesta 35 10 000 Zagreb CROATIA |
| authorships[0].institutions[0].id | https://openalex.org/I4210158666 |
| authorships[0].institutions[0].ror | https://ror.org/049k26g38 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210158666 |
| authorships[0].institutions[0].country_code | HR |
| authorships[0].institutions[0].display_name | Croatian Forest Research Institute |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ivan Balenović |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Division for Forest Management and Forestry Economics Croatian Forest Research Institute Trnjanska cesta 35 10 000 Zagreb CROATIA |
| authorships[1].author.id | https://openalex.org/A5039337836 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2345-7882 |
| authorships[1].author.display_name | Mateo Gašparović |
| authorships[1].countries | HR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I181343428 |
| authorships[1].affiliations[0].raw_affiliation_string | Chair of Photogrammetry and Remote Sensing Faculty of Geodesy, University of Zagreb Kačićeva 26 10 000 Zagreb CROATIA |
| authorships[1].institutions[0].id | https://openalex.org/I181343428 |
| authorships[1].institutions[0].ror | https://ror.org/00mv6sv71 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I181343428 |
| authorships[1].institutions[0].country_code | HR |
| authorships[1].institutions[0].display_name | University of Zagreb |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mateo Gašparović |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Chair of Photogrammetry and Remote Sensing Faculty of Geodesy, University of Zagreb Kačićeva 26 10 000 Zagreb CROATIA |
| authorships[2].author.id | https://openalex.org/A5075290078 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1573-1925 |
| authorships[2].author.display_name | Anita Šimić Milas |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I157417397 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Earth, Environment and Society Bowling Green State University 190 Overman Hall Bowling Green, OH USA |
| authorships[2].institutions[0].id | https://openalex.org/I157417397 |
| authorships[2].institutions[0].ror | https://ror.org/00ay7va13 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I157417397 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Bowling Green State University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Anita Simic Milas |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Earth, Environment and Society Bowling Green State University 190 Overman Hall Bowling Green, OH USA |
| authorships[3].author.id | https://openalex.org/A5053701396 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0428-3098 |
| authorships[3].author.display_name | Alen Berta |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Natural Resources Management Oikon Ltd. Institute of Applied Ecology Trg senjskih uskoka 1–2 10 000 Zagreb CROATIA |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Alen Berta |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Natural Resources Management Oikon Ltd. Institute of Applied Ecology Trg senjskih uskoka 1–2 10 000 Zagreb CROATIA |
| authorships[4].author.id | https://openalex.org/A5035469870 |
| authorships[4].author.orcid | https://orcid.org/0009-0001-9475-0704 |
| authorships[4].author.display_name | Ante Seletković |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Forest Inventory and Management Faculty of Forestry University of Zagreb Svetošimunska 25 10 000 Zagreb CROATIA |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Ante Seletković |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Forest Inventory and Management Faculty of Forestry University of Zagreb Svetošimunska 25 10 000 Zagreb CROATIA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doaj.org/article/45fbe83bb01e4035bd4f4a6f6cf1988b |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2018-03-06T00:00:00 |
| display_name | Accuracy Assessment of Digital Terrain Models of Lowland Pedunculate Oak Forests Derived from Airborne Laser Scanning and Photogrammetry |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11164 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Remote Sensing and LiDAR Applications |
| related_works | https://openalex.org/W180629339, https://openalex.org/W2577476128, https://openalex.org/W2887217933, https://openalex.org/W2791554042, https://openalex.org/W2934121071, https://openalex.org/W4292074262, https://openalex.org/W106958512, https://openalex.org/W51427204, https://openalex.org/W50392681, https://openalex.org/W2974118079 |
| cited_by_count | 16 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 4 |
| counts_by_year[4].year | 2019 |
| counts_by_year[4].cited_by_count | 4 |
| counts_by_year[5].year | 2018 |
| counts_by_year[5].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:doaj.org/article:45fbe83bb01e4035bd4f4a6f6cf1988b |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306401280 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Croatian Journal of Forest Engineering, Vol 39, Iss 1, Pp 117-128 (2018) |
| best_oa_location.landing_page_url | https://doaj.org/article/45fbe83bb01e4035bd4f4a6f6cf1988b |
| primary_location.id | pmh:oai:doaj.org/article:45fbe83bb01e4035bd4f4a6f6cf1988b |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306401280 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | Croatian Journal of Forest Engineering, Vol 39, Iss 1, Pp 117-128 (2018) |
| primary_location.landing_page_url | https://doaj.org/article/45fbe83bb01e4035bd4f4a6f6cf1988b |
| publication_date | 2018-01-01 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W84227776, https://openalex.org/W2570745545, https://openalex.org/W2121264346, https://openalex.org/W2595526652, https://openalex.org/W3195234955, https://openalex.org/W2185285218, https://openalex.org/W2091939427, https://openalex.org/W2755203585 |
| referenced_works_count | 8 |
| abstract_inverted_index.1 | 102, 113 |
| abstract_inverted_index.2 | 104, 115 |
| abstract_inverted_index.5 | 106, 117 |
| abstract_inverted_index.8 | 119, 204, 219 |
| abstract_inverted_index.a | 211 |
| abstract_inverted_index.m | 134, 156, 159, 194, 205, 220 |
| abstract_inverted_index.22 | 82 |
| abstract_inverted_index.As | 73 |
| abstract_inverted_index.At | 16 |
| abstract_inverted_index.In | 279 |
| abstract_inverted_index.ME | 182 |
| abstract_inverted_index.be | 262, 291 |
| abstract_inverted_index.in | 11, 57, 66, 70, 122, 235, 273, 287 |
| abstract_inverted_index.is | 208, 223 |
| abstract_inverted_index.m) | 107, 120 |
| abstract_inverted_index.m, | 101, 103, 105, 112, 114, 116, 118, 165, 197 |
| abstract_inverted_index.no | 216 |
| abstract_inverted_index.of | 41, 43, 77, 98, 132, 188, 258, 282, 292 |
| abstract_inverted_index.on | 299 |
| abstract_inverted_index.or | 27 |
| abstract_inverted_index.to | 36, 157, 163, 244, 264, 269, 294 |
| abstract_inverted_index.0.5 | 133 |
| abstract_inverted_index.ALS | 50, 283 |
| abstract_inverted_index.DTM | 127, 253, 271, 304 |
| abstract_inverted_index.For | 175 |
| abstract_inverted_index.The | 139, 199 |
| abstract_inverted_index.and | 52, 108, 145, 160, 167, 181, 190, 195, 215 |
| abstract_inverted_index.are | 20, 184, 192 |
| abstract_inverted_index.for | 8, 88, 91, 150, 210, 303 |
| abstract_inverted_index.oak | 63 |
| abstract_inverted_index.the | 38, 58, 67, 75, 95, 125, 129, 136, 168, 176, 179, 203, 230, 236, 245, 252, 270, 280, 285 |
| abstract_inverted_index.(0.5 | 100, 111 |
| abstract_inverted_index.(ME) | 148 |
| abstract_inverted_index.0.09 | 162 |
| abstract_inverted_index.0.12 | 164 |
| abstract_inverted_index.0.14 | 155 |
| abstract_inverted_index.0.15 | 158 |
| abstract_inverted_index.0.17 | 196 |
| abstract_inverted_index.0.35 | 193 |
| abstract_inverted_index.DTMs | 19, 42, 110, 152 |
| abstract_inverted_index.RMSE | 180 |
| abstract_inverted_index.This | 33, 225 |
| abstract_inverted_index.aims | 35 |
| abstract_inverted_index.also | 227 |
| abstract_inverted_index.area | 238 |
| abstract_inverted_index.data | 6, 51, 56, 234, 260, 302 |
| abstract_inverted_index.done | 263 |
| abstract_inverted_index.flat | 277 |
| abstract_inverted_index.from | 48, 154, 161 |
| abstract_inverted_index.mean | 141, 146 |
| abstract_inverted_index.rely | 298 |
| abstract_inverted_index.root | 140 |
| abstract_inverted_index.than | 90, 218 |
| abstract_inverted_index.that | 202, 229 |
| abstract_inverted_index.they | 191 |
| abstract_inverted_index.this | 123, 288 |
| abstract_inverted_index.with | 128, 171, 276 |
| abstract_inverted_index.(ALS) | 31 |
| abstract_inverted_index.(PHM) | 55 |
| abstract_inverted_index.DTMs, | 178 |
| abstract_inverted_index.DTMs. | 93 |
| abstract_inverted_index.Thus, | 255 |
| abstract_inverted_index.basin | 69 |
| abstract_inverted_index.could | 249, 290 |
| abstract_inverted_index.data, | 214, 284 |
| abstract_inverted_index.dense | 59 |
| abstract_inverted_index.error | 143, 147 |
| abstract_inverted_index.finer | 217 |
| abstract_inverted_index.given | 212 |
| abstract_inverted_index.laser | 29 |
| abstract_inverted_index.prior | 268 |
| abstract_inverted_index.range | 153 |
| abstract_inverted_index.shows | 85, 135 |
| abstract_inverted_index.still | 297 |
| abstract_inverted_index.study | 34, 237 |
| abstract_inverted_index.type, | 247 |
| abstract_inverted_index.using | 23, 81 |
| abstract_inverted_index.which | 248, 296 |
| abstract_inverted_index.(DTMs) | 3 |
| abstract_inverted_index.(RMSE) | 144 |
| abstract_inverted_index.affect | 251 |
| abstract_inverted_index.almost | 185 |
| abstract_inverted_index.errors | 241 |
| abstract_inverted_index.finest | 130 |
| abstract_inverted_index.ground | 83 |
| abstract_inverted_index.higher | 86 |
| abstract_inverted_index.level, | 18 |
| abstract_inverted_index.models | 2 |
| abstract_inverted_index.should | 261 |
| abstract_inverted_index.source | 7 |
| abstract_inverted_index.square | 142 |
| abstract_inverted_index.values | 149, 169, 183 |
| abstract_inverted_index.Central | 71 |
| abstract_inverted_index.DTMs’ | 78 |
| abstract_inverted_index.Digital | 0 |
| abstract_inverted_index.absence | 281 |
| abstract_inverted_index.certain | 240 |
| abstract_inverted_index.contain | 239 |
| abstract_inverted_index.created | 22 |
| abstract_inverted_index.derived | 47 |
| abstract_inverted_index.digital | 25, 232 |
| abstract_inverted_index.finding | 286 |
| abstract_inverted_index.forests | 64, 275 |
| abstract_inverted_index.highest | 137 |
| abstract_inverted_index.located | 65 |
| abstract_inverted_index.lowland | 60, 274 |
| abstract_inverted_index.optimal | 209 |
| abstract_inverted_index.present | 4 |
| abstract_inverted_index.reveals | 228 |
| abstract_inverted_index.similar | 300 |
| abstract_inverted_index.spatial | 45, 173, 206, 221 |
| abstract_inverted_index.suggest | 201 |
| abstract_inverted_index.terrain | 1, 246 |
| abstract_inverted_index.Croatia. | 72 |
| abstract_inverted_index.Pokupsko | 68 |
| abstract_inverted_index.accuracy | 40, 80, 87 |
| abstract_inverted_index.airborne | 24, 28 |
| abstract_inverted_index.commonly | 21 |
| abstract_inverted_index.compared | 121 |
| abstract_inverted_index.decrease | 170 |
| abstract_inverted_index.evaluate | 37 |
| abstract_inverted_index.existing | 53 |
| abstract_inverted_index.findings | 200 |
| abstract_inverted_index.national | 231 |
| abstract_inverted_index.outliers | 267 |
| abstract_inverted_index.possible | 266 |
| abstract_inverted_index.regional | 17 |
| abstract_inverted_index.research | 226, 289 |
| abstract_inverted_index.scanning | 30 |
| abstract_inverted_index.specific | 243 |
| abstract_inverted_index.terrain. | 278 |
| abstract_inverted_index.vertical | 39, 79 |
| abstract_inverted_index.accuracy. | 138, 254 |
| abstract_inverted_index.different | 9, 44, 96 |
| abstract_inverted_index.eliminate | 265 |
| abstract_inverted_index.even-aged | 61 |
| abstract_inverted_index.expected, | 74 |
| abstract_inverted_index.forestry. | 15 |
| abstract_inverted_index.identical | 186 |
| abstract_inverted_index.important | 5 |
| abstract_inverted_index.including | 14 |
| abstract_inverted_index.interests | 293 |
| abstract_inverted_index.required. | 224 |
| abstract_inverted_index.research, | 124 |
| abstract_inverted_index.(outliers) | 242 |
| abstract_inverted_index.Concerning | 94 |
| abstract_inverted_index.assessment | 76 |
| abstract_inverted_index.countries, | 295 |
| abstract_inverted_index.decreasing | 172 |
| abstract_inverted_index.evaluation | 257 |
| abstract_inverted_index.generation | 272 |
| abstract_inverted_index.regardless | 187 |
| abstract_inverted_index.resolution | 131, 189, 207, 222 |
| abstract_inverted_index.ALS-derived | 89, 99, 126, 151 |
| abstract_inverted_index.PHM-derived | 92, 109, 177 |
| abstract_inverted_index.checkpoints | 84 |
| abstract_inverted_index.disciplines | 13 |
| abstract_inverted_index.generation. | 305 |
| abstract_inverted_index.pedunculate | 62 |
| abstract_inverted_index.preliminary | 256 |
| abstract_inverted_index.resolution. | 174 |
| abstract_inverted_index.resolutions | 46, 97 |
| abstract_inverted_index.technology. | 32 |
| abstract_inverted_index.applications | 10 |
| abstract_inverted_index.considerably | 250 |
| abstract_inverted_index.high-density | 49 |
| abstract_inverted_index.environmental | 12 |
| abstract_inverted_index.respectively, | 166 |
| abstract_inverted_index.respectively. | 198 |
| abstract_inverted_index.photogrammetry | 26 |
| abstract_inverted_index.photogrammetric | 54, 213, 233, 259, 301 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.81457896 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |