Accurate 3D Medical Image Segmentation with Mambas Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/isbi60581.2025.10981167
CNNs and Transformer-based architectures are recently dominating the field of 3D medical segmentation. While CNNs face limitations in the local receptive field, Transformers require significant memory and data, making them less suitable for analyzing large 3D medical volumes. Consequently, fully convolutional network models like U-Net are still leading the 3D segmentation scenario. Although efforts have been made to reduce the Transformers computational complexity, such optimized models still struggle with content-based reasoning. This paper examines Mamba, a Recurrent Neural Network (RNN) based on State Space Models (SSMs), which achieves linear complexity and has outperformed Transformers in long-sequence tasks. Specifically, we assess Mamba’s performance in 3D medical segmentation using three widely recognized and commonly employed datasets and propose architectural enhancements to improve its segmentation effectiveness by mitigating the primary shortcomings of existing Mamba-based solutions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/isbi60581.2025.10981167
- OA Status
- green
- Cited By
- 1
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410296443
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410296443Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/isbi60581.2025.10981167Digital Object Identifier
- Title
-
Accurate 3D Medical Image Segmentation with MambasWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-14Full publication date if available
- Authors
-
Luca Lumetti, Vittorio Pipoli, Kevin Marchesini, Elisa Ficarra, Costantino Grana, Federico BolelliList of authors in order
- Landing page
-
https://doi.org/10.1109/isbi60581.2025.10981167Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/11380/1367190Direct OA link when available
- Concepts
-
Computer vision, Artificial intelligence, Computer science, Image segmentation, Segmentation, Scale-space segmentation, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410296443 |
|---|---|
| doi | https://doi.org/10.1109/isbi60581.2025.10981167 |
| ids.doi | https://doi.org/10.1109/isbi60581.2025.10981167 |
| ids.openalex | https://openalex.org/W4410296443 |
| fwci | 4.77340731 |
| type | article |
| title | Accurate 3D Medical Image Segmentation with Mambas |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 5 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10052 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9564999938011169 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Medical Image Segmentation Techniques |
| topics[1].id | https://openalex.org/T14510 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9294999837875366 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Medical Imaging and Analysis |
| topics[2].id | https://openalex.org/T12549 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9185000061988831 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image and Object Detection Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C31972630 |
| concepts[0].level | 1 |
| concepts[0].score | 0.725398063659668 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[0].display_name | Computer vision |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6822516918182373 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6703901886940002 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C124504099 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6530743837356567 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[3].display_name | Image segmentation |
| concepts[4].id | https://openalex.org/C89600930 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5150882601737976 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[4].display_name | Segmentation |
| concepts[5].id | https://openalex.org/C65885262 |
| concepts[5].level | 4 |
| concepts[5].score | 0.49167758226394653 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7429708 |
| concepts[5].display_name | Scale-space segmentation |
| concepts[6].id | https://openalex.org/C115961682 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4344446659088135 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[6].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/computer-vision |
| keywords[0].score | 0.725398063659668 |
| keywords[0].display_name | Computer vision |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6822516918182373 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6703901886940002 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/image-segmentation |
| keywords[3].score | 0.6530743837356567 |
| keywords[3].display_name | Image segmentation |
| keywords[4].id | https://openalex.org/keywords/segmentation |
| keywords[4].score | 0.5150882601737976 |
| keywords[4].display_name | Segmentation |
| keywords[5].id | https://openalex.org/keywords/scale-space-segmentation |
| keywords[5].score | 0.49167758226394653 |
| keywords[5].display_name | Scale-space segmentation |
| keywords[6].id | https://openalex.org/keywords/image |
| keywords[6].score | 0.4344446659088135 |
| keywords[6].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.1109/isbi60581.2025.10981167 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2025 IEEE 22nd International Symposium on Biomedical Imaging (ISBI) |
| locations[0].landing_page_url | https://doi.org/10.1109/isbi60581.2025.10981167 |
| locations[1].id | pmh:oai:iris.unimore.it:11380/1367190 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400718 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | IRIS UNIMORE (University of Modena and Reggio Emilia) |
| locations[1].source.host_organization | https://openalex.org/I122346577 |
| locations[1].source.host_organization_name | University of Modena and Reggio Emilia |
| locations[1].source.host_organization_lineage | https://openalex.org/I122346577 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/conferenceObject |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://hdl.handle.net/11380/1367190 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5074135699 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1046-332X |
| authorships[0].author.display_name | Luca Lumetti |
| authorships[0].countries | IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I122346577 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Modena and Reggio,Emilia,Italy |
| authorships[0].institutions[0].id | https://openalex.org/I122346577 |
| authorships[0].institutions[0].ror | https://ror.org/02d4c4y02 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I122346577 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | University of Modena and Reggio Emilia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Luca Lumetti |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Modena and Reggio,Emilia,Italy |
| authorships[1].author.id | https://openalex.org/A5053700932 |
| authorships[1].author.orcid | https://orcid.org/0009-0008-5749-6007 |
| authorships[1].author.display_name | Vittorio Pipoli |
| authorships[1].countries | IT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I122346577 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Modena and Reggio,Emilia,Italy |
| authorships[1].institutions[0].id | https://openalex.org/I122346577 |
| authorships[1].institutions[0].ror | https://ror.org/02d4c4y02 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I122346577 |
| authorships[1].institutions[0].country_code | IT |
| authorships[1].institutions[0].display_name | University of Modena and Reggio Emilia |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Vittorio Pipoli |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Modena and Reggio,Emilia,Italy |
| authorships[2].author.id | https://openalex.org/A5114534390 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Kevin Marchesini |
| authorships[2].countries | IT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I122346577 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Modena and Reggio,Emilia,Italy |
| authorships[2].institutions[0].id | https://openalex.org/I122346577 |
| authorships[2].institutions[0].ror | https://ror.org/02d4c4y02 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I122346577 |
| authorships[2].institutions[0].country_code | IT |
| authorships[2].institutions[0].display_name | University of Modena and Reggio Emilia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kevin Marchesini |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Modena and Reggio,Emilia,Italy |
| authorships[3].author.id | https://openalex.org/A5068452817 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8061-2124 |
| authorships[3].author.display_name | Elisa Ficarra |
| authorships[3].countries | IT |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I122346577 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Modena and Reggio,Emilia,Italy |
| authorships[3].institutions[0].id | https://openalex.org/I122346577 |
| authorships[3].institutions[0].ror | https://ror.org/02d4c4y02 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I122346577 |
| authorships[3].institutions[0].country_code | IT |
| authorships[3].institutions[0].display_name | University of Modena and Reggio Emilia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Elisa Ficarra |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Modena and Reggio,Emilia,Italy |
| authorships[4].author.id | https://openalex.org/A5003393933 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4792-2358 |
| authorships[4].author.display_name | Costantino Grana |
| authorships[4].countries | IT |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I122346577 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Modena and Reggio,Emilia,Italy |
| authorships[4].institutions[0].id | https://openalex.org/I122346577 |
| authorships[4].institutions[0].ror | https://ror.org/02d4c4y02 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I122346577 |
| authorships[4].institutions[0].country_code | IT |
| authorships[4].institutions[0].display_name | University of Modena and Reggio Emilia |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Costantino Grana |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Modena and Reggio,Emilia,Italy |
| authorships[5].author.id | https://openalex.org/A5028716245 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5299-6351 |
| authorships[5].author.display_name | Federico Bolelli |
| authorships[5].countries | IT |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I122346577 |
| authorships[5].affiliations[0].raw_affiliation_string | University of Modena and Reggio,Emilia,Italy |
| authorships[5].institutions[0].id | https://openalex.org/I122346577 |
| authorships[5].institutions[0].ror | https://ror.org/02d4c4y02 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I122346577 |
| authorships[5].institutions[0].country_code | IT |
| authorships[5].institutions[0].display_name | University of Modena and Reggio Emilia |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Federico Bolelli |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | University of Modena and Reggio,Emilia,Italy |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://hdl.handle.net/11380/1367190 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Accurate 3D Medical Image Segmentation with Mambas |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10052 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9564999938011169 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Medical Image Segmentation Techniques |
| related_works | https://openalex.org/W1986655823, https://openalex.org/W2185902295, https://openalex.org/W2103507220, https://openalex.org/W3144569342, https://openalex.org/W3011384228, https://openalex.org/W2124969951, https://openalex.org/W2945274617, https://openalex.org/W4313052709, https://openalex.org/W4298131179, https://openalex.org/W2375430703 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:iris.unimore.it:11380/1367190 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400718 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IRIS UNIMORE (University of Modena and Reggio Emilia) |
| best_oa_location.source.host_organization | https://openalex.org/I122346577 |
| best_oa_location.source.host_organization_name | University of Modena and Reggio Emilia |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I122346577 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/conferenceObject |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://hdl.handle.net/11380/1367190 |
| primary_location.id | doi:10.1109/isbi60581.2025.10981167 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2025 IEEE 22nd International Symposium on Biomedical Imaging (ISBI) |
| primary_location.landing_page_url | https://doi.org/10.1109/isbi60581.2025.10981167 |
| publication_date | 2025-04-14 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3035665735, https://openalex.org/W2112796928, https://openalex.org/W1901129140, https://openalex.org/W3007268491, https://openalex.org/W3030515889, https://openalex.org/W2962914239, https://openalex.org/W3014974815, https://openalex.org/W4385245566, https://openalex.org/W4384159609, https://openalex.org/W4399310941, https://openalex.org/W4404892979, https://openalex.org/W4400881081, https://openalex.org/W4212875960, https://openalex.org/W4221163766, https://openalex.org/W6779163297, https://openalex.org/W6776048684, https://openalex.org/W6859298233, https://openalex.org/W6851579256, https://openalex.org/W6861342692, https://openalex.org/W6861296007, https://openalex.org/W6861213978, https://openalex.org/W4403152483, https://openalex.org/W4400238700, https://openalex.org/W6862087182, https://openalex.org/W6860915106, https://openalex.org/W6782420349, https://openalex.org/W3094502228, https://openalex.org/W4387211248, https://openalex.org/W3204255739, https://openalex.org/W3172681723, https://openalex.org/W6902762063, https://openalex.org/W2804047627 |
| referenced_works_count | 32 |
| abstract_inverted_index.a | 75 |
| abstract_inverted_index.3D | 10, 35, 49, 103 |
| abstract_inverted_index.by | 123 |
| abstract_inverted_index.in | 17, 94, 102 |
| abstract_inverted_index.of | 9, 128 |
| abstract_inverted_index.on | 81 |
| abstract_inverted_index.to | 57, 118 |
| abstract_inverted_index.we | 98 |
| abstract_inverted_index.and | 1, 26, 90, 110, 114 |
| abstract_inverted_index.are | 4, 45 |
| abstract_inverted_index.for | 32 |
| abstract_inverted_index.has | 91 |
| abstract_inverted_index.its | 120 |
| abstract_inverted_index.the | 7, 18, 48, 59, 125 |
| abstract_inverted_index.CNNs | 0, 14 |
| abstract_inverted_index.This | 71 |
| abstract_inverted_index.been | 55 |
| abstract_inverted_index.face | 15 |
| abstract_inverted_index.have | 54 |
| abstract_inverted_index.less | 30 |
| abstract_inverted_index.like | 43 |
| abstract_inverted_index.made | 56 |
| abstract_inverted_index.such | 63 |
| abstract_inverted_index.them | 29 |
| abstract_inverted_index.with | 68 |
| abstract_inverted_index.(RNN) | 79 |
| abstract_inverted_index.Space | 83 |
| abstract_inverted_index.State | 82 |
| abstract_inverted_index.U-Net | 44 |
| abstract_inverted_index.While | 13 |
| abstract_inverted_index.based | 80 |
| abstract_inverted_index.data, | 27 |
| abstract_inverted_index.field | 8 |
| abstract_inverted_index.fully | 39 |
| abstract_inverted_index.large | 34 |
| abstract_inverted_index.local | 19 |
| abstract_inverted_index.paper | 72 |
| abstract_inverted_index.still | 46, 66 |
| abstract_inverted_index.three | 107 |
| abstract_inverted_index.using | 106 |
| abstract_inverted_index.which | 86 |
| abstract_inverted_index.Mamba, | 74 |
| abstract_inverted_index.Models | 84 |
| abstract_inverted_index.Neural | 77 |
| abstract_inverted_index.assess | 99 |
| abstract_inverted_index.field, | 21 |
| abstract_inverted_index.linear | 88 |
| abstract_inverted_index.making | 28 |
| abstract_inverted_index.memory | 25 |
| abstract_inverted_index.models | 42, 65 |
| abstract_inverted_index.reduce | 58 |
| abstract_inverted_index.tasks. | 96 |
| abstract_inverted_index.widely | 108 |
| abstract_inverted_index.(SSMs), | 85 |
| abstract_inverted_index.Network | 78 |
| abstract_inverted_index.efforts | 53 |
| abstract_inverted_index.improve | 119 |
| abstract_inverted_index.leading | 47 |
| abstract_inverted_index.medical | 11, 36, 104 |
| abstract_inverted_index.network | 41 |
| abstract_inverted_index.primary | 126 |
| abstract_inverted_index.propose | 115 |
| abstract_inverted_index.require | 23 |
| abstract_inverted_index.Although | 52 |
| abstract_inverted_index.achieves | 87 |
| abstract_inverted_index.commonly | 111 |
| abstract_inverted_index.datasets | 113 |
| abstract_inverted_index.employed | 112 |
| abstract_inverted_index.examines | 73 |
| abstract_inverted_index.existing | 129 |
| abstract_inverted_index.recently | 5 |
| abstract_inverted_index.struggle | 67 |
| abstract_inverted_index.suitable | 31 |
| abstract_inverted_index.volumes. | 37 |
| abstract_inverted_index.Mamba’s | 100 |
| abstract_inverted_index.Recurrent | 76 |
| abstract_inverted_index.analyzing | 33 |
| abstract_inverted_index.optimized | 64 |
| abstract_inverted_index.receptive | 20 |
| abstract_inverted_index.scenario. | 51 |
| abstract_inverted_index.complexity | 89 |
| abstract_inverted_index.dominating | 6 |
| abstract_inverted_index.mitigating | 124 |
| abstract_inverted_index.reasoning. | 70 |
| abstract_inverted_index.recognized | 109 |
| abstract_inverted_index.solutions. | 131 |
| abstract_inverted_index.Mamba-based | 130 |
| abstract_inverted_index.complexity, | 62 |
| abstract_inverted_index.limitations | 16 |
| abstract_inverted_index.performance | 101 |
| abstract_inverted_index.significant | 24 |
| abstract_inverted_index.Transformers | 22, 60, 93 |
| abstract_inverted_index.enhancements | 117 |
| abstract_inverted_index.outperformed | 92 |
| abstract_inverted_index.segmentation | 50, 105, 121 |
| abstract_inverted_index.shortcomings | 127 |
| abstract_inverted_index.Consequently, | 38 |
| abstract_inverted_index.Specifically, | 97 |
| abstract_inverted_index.architectural | 116 |
| abstract_inverted_index.architectures | 3 |
| abstract_inverted_index.computational | 61 |
| abstract_inverted_index.content-based | 69 |
| abstract_inverted_index.convolutional | 40 |
| abstract_inverted_index.effectiveness | 122 |
| abstract_inverted_index.long-sequence | 95 |
| abstract_inverted_index.segmentation. | 12 |
| abstract_inverted_index.Transformer-based | 2 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.8711267 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |