Accurate and Scalable Classification of Colonoscopy Neoplasia using Machine Learning and Natural Language Processing Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.14309/ctg.0000000000000959
Introduction: Colorectal cancer (CRC) remains a leading cause of cancer associated death in the United States and colonoscopy the primary screening strategy for prevention. Rates of adenomatous and serrated neoplasia detection are inversely associated with post-colonoscopy CRC. This crucial quality metric depends on accurate ascertainment of colorectal neoplasia findings from both endoscopy and histopathology records. We aimed to assess the feasibility of a random forest machine learning model to rapidly and accurately categorize colorectal neoplasia from electronic health record data. Methods: A retrospective cohort study compared neoplasia detection rates among individuals undergoing colonoscopy at a large academic institution to develop a rule-based algorithm to categorize colorectal neoplasia from endoscopy reports and pathology SNOMED II codes. This cohort provided a large training set to develop a natural language processing (NLP) system using a random forest approach to automatically classify unstructured pathology findings into adenoma, serrated, or advanced neoplasms. This system was manually validated through an independent holdout set. Results: The training set comprised 35,953 unstructured pathology reports with matched SNOWMED II codes from 95,188 unstructured colonoscopy reports. The final model was assessed on an independent holdout set of 337 manually annotated procedures obtaining an AUC of 0.997 (CI 0.994 - 1), 0.99 (CI 0.98-1), and 0.99 (CI 0.98-0.99) for prediction of adenoma, serrated, and advanced lesions respectively. Discussion: The random forest-based hybrid NLP system for classification of colonoscopy results was both accurate and explainable. NLP combined with effective machine learning algorithms can provide a scalable strategy for colonoscopy quality monitoring.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.14309/ctg.0000000000000959
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4417158759
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417158759Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.14309/ctg.0000000000000959Digital Object Identifier
- Title
-
Accurate and Scalable Classification of Colonoscopy Neoplasia using Machine Learning and Natural Language ProcessingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-09Full publication date if available
- Authors
-
Brendan T. Broderick, Jason D. Greenwood, Douglas W. Mahoney, Kelli N. Burger, Sushil Kumar Garg, Michael B. Wallace, Suryakanth Gurudu, Derek W. Ebner, John B. KisielList of authors in order
- Landing page
-
https://doi.org/10.14309/ctg.0000000000000959Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.14309/ctg.0000000000000959Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417158759 |
|---|---|
| doi | https://doi.org/10.14309/ctg.0000000000000959 |
| ids.doi | https://doi.org/10.14309/ctg.0000000000000959 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41363713 |
| ids.openalex | https://openalex.org/W4417158759 |
| fwci | |
| type | article |
| title | Accurate and Scalable Classification of Colonoscopy Neoplasia using Machine Learning and Natural Language Processing |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list.value | 2800 |
| apc_list.currency | USD |
| apc_list.value_usd | 2800 |
| apc_paid.value | 2800 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2800 |
| language | en |
| locations[0].id | doi:10.14309/ctg.0000000000000959 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764670792 |
| locations[0].source.issn | 2155-384X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2155-384X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Clinical and Translational Gastroenterology |
| locations[0].source.host_organization | https://openalex.org/P4310315671 |
| locations[0].source.host_organization_name | Lippincott Williams & Wilkins |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315671, https://openalex.org/P4310318547 |
| locations[0].source.host_organization_lineage_names | Lippincott Williams & Wilkins, Wolters Kluwer |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Clinical and Translational Gastroenterology |
| locations[0].landing_page_url | https://doi.org/10.14309/ctg.0000000000000959 |
| locations[1].id | pmid:41363713 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Clinical and translational gastroenterology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41363713 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5051127316 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Brendan T. Broderick |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210125099 |
| authorships[0].affiliations[0].raw_affiliation_string | Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, Minnesota, USA |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210091245 |
| authorships[0].affiliations[1].raw_affiliation_string | Co-First Authors |
| authorships[0].institutions[0].id | https://openalex.org/I4210091245 |
| authorships[0].institutions[0].ror | https://ror.org/00cm7z053 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210091245 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Health First |
| authorships[0].institutions[1].id | https://openalex.org/I4210125099 |
| authorships[0].institutions[1].ror | https://ror.org/03jp40720 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I1330342723, https://openalex.org/I4210125099 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Mayo Clinic in Arizona |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Brendan Broderick |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Co-First Authors, Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, Minnesota, USA |
| authorships[1].author.id | https://openalex.org/A5022516851 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9397-0107 |
| authorships[1].author.display_name | Jason D. Greenwood |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210091245 |
| authorships[1].affiliations[0].raw_affiliation_string | Co-First Authors |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I1330342723 |
| authorships[1].affiliations[1].raw_affiliation_string | Division of Family Medicine, Mayo Clinic, Rochester, Minnesota, USA |
| authorships[1].institutions[0].id | https://openalex.org/I4210091245 |
| authorships[1].institutions[0].ror | https://ror.org/00cm7z053 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210091245 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Health First |
| authorships[1].institutions[1].id | https://openalex.org/I1330342723 |
| authorships[1].institutions[1].ror | https://ror.org/02qp3tb03 |
| authorships[1].institutions[1].type | healthcare |
| authorships[1].institutions[1].lineage | https://openalex.org/I1330342723 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | Mayo Clinic |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jason Greenwood |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Co-First Authors, Division of Family Medicine, Mayo Clinic, Rochester, Minnesota, USA |
| authorships[2].author.id | https://openalex.org/A5038158795 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5144-0645 |
| authorships[2].author.display_name | Douglas W. Mahoney |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1330342723 |
| authorships[2].affiliations[0].raw_affiliation_string | Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA |
| authorships[2].institutions[0].id | https://openalex.org/I1330342723 |
| authorships[2].institutions[0].ror | https://ror.org/02qp3tb03 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I1330342723 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Mayo Clinic |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Douglas Mahoney |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA |
| authorships[3].author.id | https://openalex.org/A5075202785 |
| authorships[3].author.orcid | https://orcid.org/0009-0003-9522-2334 |
| authorships[3].author.display_name | Kelli N. Burger |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1330342723 |
| authorships[3].affiliations[0].raw_affiliation_string | Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA |
| authorships[3].institutions[0].id | https://openalex.org/I1330342723 |
| authorships[3].institutions[0].ror | https://ror.org/02qp3tb03 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I1330342723 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Mayo Clinic |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kelli Burger |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA |
| authorships[4].author.id | https://openalex.org/A5089041959 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8621-0214 |
| authorships[4].author.display_name | Sushil Kumar Garg |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210123409 |
| authorships[4].affiliations[0].raw_affiliation_string | Division of Gastroenterology and Hepatology, Mayo Clinic Health System, Eau Claire, Wisconsin, USA |
| authorships[4].institutions[0].id | https://openalex.org/I4210123409 |
| authorships[4].institutions[0].ror | https://ror.org/02zzw8g45 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I1330342723, https://openalex.org/I4210123409 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Mayo Clinic Health System |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Sushil Kumar Garg |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Division of Gastroenterology and Hepatology, Mayo Clinic Health System, Eau Claire, Wisconsin, USA |
| authorships[5].author.id | https://openalex.org/A5010559287 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6446-5785 |
| authorships[5].author.display_name | Michael B. Wallace |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I2801572250, https://openalex.org/I4210146710 |
| authorships[5].affiliations[0].raw_affiliation_string | Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA |
| authorships[5].institutions[0].id | https://openalex.org/I2801572250 |
| authorships[5].institutions[0].ror | https://ror.org/03a9t7g49 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I2801572250 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Jacksonville College |
| authorships[5].institutions[1].id | https://openalex.org/I4210146710 |
| authorships[5].institutions[1].ror | https://ror.org/03zzw1w08 |
| authorships[5].institutions[1].type | healthcare |
| authorships[5].institutions[1].lineage | https://openalex.org/I1330342723, https://openalex.org/I4210146710 |
| authorships[5].institutions[1].country_code | US |
| authorships[5].institutions[1].display_name | Mayo Clinic in Florida |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Michael B Wallace |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA |
| authorships[6].author.id | https://openalex.org/A5113882105 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Suryakanth Gurudu |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210125099 |
| authorships[6].affiliations[0].raw_affiliation_string | Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, Arizona, USA |
| authorships[6].institutions[0].id | https://openalex.org/I4210125099 |
| authorships[6].institutions[0].ror | https://ror.org/03jp40720 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I1330342723, https://openalex.org/I4210125099 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Mayo Clinic in Arizona |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Suryakanth R Gurudu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, Arizona, USA |
| authorships[7].author.id | https://openalex.org/A5044304609 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-0089-2507 |
| authorships[7].author.display_name | Derek W. Ebner |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I1330342723, https://openalex.org/I2802423016 |
| authorships[7].affiliations[0].raw_affiliation_string | Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA |
| authorships[7].institutions[0].id | https://openalex.org/I1330342723 |
| authorships[7].institutions[0].ror | https://ror.org/02qp3tb03 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I1330342723 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Mayo Clinic |
| authorships[7].institutions[1].id | https://openalex.org/I2802423016 |
| authorships[7].institutions[1].ror | https://ror.org/02s47w807 |
| authorships[7].institutions[1].type | nonprofit |
| authorships[7].institutions[1].lineage | https://openalex.org/I2802423016 |
| authorships[7].institutions[1].country_code | US |
| authorships[7].institutions[1].display_name | WinnMed |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Derek Ebner |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA |
| authorships[8].author.id | https://openalex.org/A5017521990 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-3840-5324 |
| authorships[8].author.display_name | John B. Kisiel |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I1330342723, https://openalex.org/I2802423016 |
| authorships[8].affiliations[0].raw_affiliation_string | Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA |
| authorships[8].institutions[0].id | https://openalex.org/I1330342723 |
| authorships[8].institutions[0].ror | https://ror.org/02qp3tb03 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I1330342723 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Mayo Clinic |
| authorships[8].institutions[1].id | https://openalex.org/I2802423016 |
| authorships[8].institutions[1].ror | https://ror.org/02s47w807 |
| authorships[8].institutions[1].type | nonprofit |
| authorships[8].institutions[1].lineage | https://openalex.org/I2802423016 |
| authorships[8].institutions[1].country_code | US |
| authorships[8].institutions[1].display_name | WinnMed |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | John Kisiel |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.14309/ctg.0000000000000959 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-09T00:00:00 |
| display_name | Accurate and Scalable Classification of Colonoscopy Neoplasia using Machine Learning and Natural Language Processing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-11T00:21:10.989143 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.14309/ctg.0000000000000959 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764670792 |
| best_oa_location.source.issn | 2155-384X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2155-384X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Clinical and Translational Gastroenterology |
| best_oa_location.source.host_organization | https://openalex.org/P4310315671 |
| best_oa_location.source.host_organization_name | Lippincott Williams & Wilkins |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315671, https://openalex.org/P4310318547 |
| best_oa_location.source.host_organization_lineage_names | Lippincott Williams & Wilkins, Wolters Kluwer |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Clinical and Translational Gastroenterology |
| best_oa_location.landing_page_url | https://doi.org/10.14309/ctg.0000000000000959 |
| primary_location.id | doi:10.14309/ctg.0000000000000959 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764670792 |
| primary_location.source.issn | 2155-384X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2155-384X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Clinical and Translational Gastroenterology |
| primary_location.source.host_organization | https://openalex.org/P4310315671 |
| primary_location.source.host_organization_name | Lippincott Williams & Wilkins |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315671, https://openalex.org/P4310318547 |
| primary_location.source.host_organization_lineage_names | Lippincott Williams & Wilkins, Wolters Kluwer |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Clinical and Translational Gastroenterology |
| primary_location.landing_page_url | https://doi.org/10.14309/ctg.0000000000000959 |
| publication_date | 2025-12-09 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 198 |
| abstract_inverted_index.A | 81 |
| abstract_inverted_index.a | 5, 62, 94, 100, 118, 124, 131, 242 |
| abstract_inverted_index.II | 113, 169 |
| abstract_inverted_index.We | 55 |
| abstract_inverted_index.an | 153, 182, 192 |
| abstract_inverted_index.at | 93 |
| abstract_inverted_index.in | 12 |
| abstract_inverted_index.of | 8, 25, 45, 61, 186, 194, 209, 225 |
| abstract_inverted_index.on | 42, 181 |
| abstract_inverted_index.or | 144 |
| abstract_inverted_index.to | 57, 68, 98, 103, 122, 135 |
| abstract_inverted_index.(CI | 196, 201, 205 |
| abstract_inverted_index.1), | 199 |
| abstract_inverted_index.337 | 187 |
| abstract_inverted_index.AUC | 193 |
| abstract_inverted_index.NLP | 221, 233 |
| abstract_inverted_index.The | 158, 176, 217 |
| abstract_inverted_index.and | 16, 27, 52, 70, 110, 203, 212, 231 |
| abstract_inverted_index.are | 31 |
| abstract_inverted_index.can | 240 |
| abstract_inverted_index.for | 22, 207, 223, 245 |
| abstract_inverted_index.set | 121, 160, 185 |
| abstract_inverted_index.the | 13, 18, 59 |
| abstract_inverted_index.was | 149, 179, 228 |
| abstract_inverted_index.0.99 | 200, 204 |
| abstract_inverted_index.CRC. | 36 |
| abstract_inverted_index.This | 37, 115, 147 |
| abstract_inverted_index.both | 50, 229 |
| abstract_inverted_index.from | 49, 75, 107, 171 |
| abstract_inverted_index.into | 141 |
| abstract_inverted_index.set. | 156 |
| abstract_inverted_index.with | 34, 166, 235 |
| abstract_inverted_index.(CRC) | 3 |
| abstract_inverted_index.(NLP) | 128 |
| abstract_inverted_index.0.994 | 197 |
| abstract_inverted_index.0.997 | 195 |
| abstract_inverted_index.Rates | 24 |
| abstract_inverted_index.aimed | 56 |
| abstract_inverted_index.among | 89 |
| abstract_inverted_index.cause | 7 |
| abstract_inverted_index.codes | 170 |
| abstract_inverted_index.data. | 79 |
| abstract_inverted_index.death | 11 |
| abstract_inverted_index.final | 177 |
| abstract_inverted_index.large | 95, 119 |
| abstract_inverted_index.model | 67, 178 |
| abstract_inverted_index.rates | 88 |
| abstract_inverted_index.study | 84 |
| abstract_inverted_index.using | 130 |
| abstract_inverted_index.35,953 | 162 |
| abstract_inverted_index.95,188 | 172 |
| abstract_inverted_index.SNOMED | 112 |
| abstract_inverted_index.States | 15 |
| abstract_inverted_index.United | 14 |
| abstract_inverted_index.assess | 58 |
| abstract_inverted_index.cancer | 2, 9 |
| abstract_inverted_index.codes. | 114 |
| abstract_inverted_index.cohort | 83, 116 |
| abstract_inverted_index.forest | 64, 133 |
| abstract_inverted_index.health | 77 |
| abstract_inverted_index.hybrid | 220 |
| abstract_inverted_index.metric | 40 |
| abstract_inverted_index.random | 63, 132, 218 |
| abstract_inverted_index.record | 78 |
| abstract_inverted_index.system | 129, 148, 222 |
| abstract_inverted_index.SNOWMED | 168 |
| abstract_inverted_index.crucial | 38 |
| abstract_inverted_index.depends | 41 |
| abstract_inverted_index.develop | 99, 123 |
| abstract_inverted_index.holdout | 155, 184 |
| abstract_inverted_index.leading | 6 |
| abstract_inverted_index.lesions | 214 |
| abstract_inverted_index.machine | 65, 237 |
| abstract_inverted_index.matched | 167 |
| abstract_inverted_index.natural | 125 |
| abstract_inverted_index.primary | 19 |
| abstract_inverted_index.provide | 241 |
| abstract_inverted_index.quality | 39, 247 |
| abstract_inverted_index.rapidly | 69 |
| abstract_inverted_index.remains | 4 |
| abstract_inverted_index.reports | 109, 165 |
| abstract_inverted_index.results | 227 |
| abstract_inverted_index.through | 152 |
| abstract_inverted_index.0.98-1), | 202 |
| abstract_inverted_index.Methods: | 80 |
| abstract_inverted_index.Results: | 157 |
| abstract_inverted_index.academic | 96 |
| abstract_inverted_index.accurate | 43, 230 |
| abstract_inverted_index.adenoma, | 142, 210 |
| abstract_inverted_index.advanced | 145, 213 |
| abstract_inverted_index.approach | 134 |
| abstract_inverted_index.assessed | 180 |
| abstract_inverted_index.classify | 137 |
| abstract_inverted_index.combined | 234 |
| abstract_inverted_index.compared | 85 |
| abstract_inverted_index.findings | 48, 140 |
| abstract_inverted_index.language | 126 |
| abstract_inverted_index.learning | 66, 238 |
| abstract_inverted_index.manually | 150, 188 |
| abstract_inverted_index.provided | 117 |
| abstract_inverted_index.records. | 54 |
| abstract_inverted_index.reports. | 175 |
| abstract_inverted_index.scalable | 243 |
| abstract_inverted_index.serrated | 28 |
| abstract_inverted_index.strategy | 21, 244 |
| abstract_inverted_index.training | 120, 159 |
| abstract_inverted_index.algorithm | 102 |
| abstract_inverted_index.annotated | 189 |
| abstract_inverted_index.comprised | 161 |
| abstract_inverted_index.detection | 30, 87 |
| abstract_inverted_index.effective | 236 |
| abstract_inverted_index.endoscopy | 51, 108 |
| abstract_inverted_index.inversely | 32 |
| abstract_inverted_index.neoplasia | 29, 47, 74, 86, 106 |
| abstract_inverted_index.obtaining | 191 |
| abstract_inverted_index.pathology | 111, 139, 164 |
| abstract_inverted_index.screening | 20 |
| abstract_inverted_index.serrated, | 143, 211 |
| abstract_inverted_index.validated | 151 |
| abstract_inverted_index.0.98-0.99) | 206 |
| abstract_inverted_index.Colorectal | 1 |
| abstract_inverted_index.accurately | 71 |
| abstract_inverted_index.algorithms | 239 |
| abstract_inverted_index.associated | 10, 33 |
| abstract_inverted_index.categorize | 72, 104 |
| abstract_inverted_index.colorectal | 46, 73, 105 |
| abstract_inverted_index.electronic | 76 |
| abstract_inverted_index.neoplasms. | 146 |
| abstract_inverted_index.prediction | 208 |
| abstract_inverted_index.procedures | 190 |
| abstract_inverted_index.processing | 127 |
| abstract_inverted_index.rule-based | 101 |
| abstract_inverted_index.undergoing | 91 |
| abstract_inverted_index.Discussion: | 216 |
| abstract_inverted_index.adenomatous | 26 |
| abstract_inverted_index.colonoscopy | 17, 92, 174, 226, 246 |
| abstract_inverted_index.feasibility | 60 |
| abstract_inverted_index.independent | 154, 183 |
| abstract_inverted_index.individuals | 90 |
| abstract_inverted_index.institution | 97 |
| abstract_inverted_index.monitoring. | 248 |
| abstract_inverted_index.prevention. | 23 |
| abstract_inverted_index.explainable. | 232 |
| abstract_inverted_index.forest-based | 219 |
| abstract_inverted_index.unstructured | 138, 163, 173 |
| abstract_inverted_index.Introduction: | 0 |
| abstract_inverted_index.ascertainment | 44 |
| abstract_inverted_index.automatically | 136 |
| abstract_inverted_index.respectively. | 215 |
| abstract_inverted_index.retrospective | 82 |
| abstract_inverted_index.classification | 224 |
| abstract_inverted_index.histopathology | 53 |
| abstract_inverted_index.post-colonoscopy | 35 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5051127316, https://openalex.org/A5022516851 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I1330342723, https://openalex.org/I4210091245, https://openalex.org/I4210125099 |
| citation_normalized_percentile |