Accurate Models of NVIDIA Tensor Cores Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2512.07004
Matrix multiplication is a fundamental operation in for both training of neural networks and inference. To accelerate matrix multiplication, Graphical Processing Units (GPUs) provide it implemented in hardware. Due to the increased throughput over the software-based matrix multiplication, the multipliers are increasingly used outside of AI, to accelerate various applications in scientific computing. However, matrix multipliers targeted at AI are at present not compliant with IEEE 754 floating-point arithmetic behaviour, with different vendors offering different numerical features. This leads to non-reproducible results across different generations of GPU architectures, at the matrix multiply-accumulate instruction level. To study numerical characteristics of matrix multipliers-such as rounding behaviour, accumulator width, normalization points, extra carry bits, and others-test vectors are typically constructed. Yet, these vectors may or may not distinguish between different hardware models, and due to limited hardware availability, their reliability across many different platforms remains largely untested. We present software models for emulating the inner product behavior of low- and mixed-precision matrix multipliers in the V100, A100, H100 and B200 data center GPUs in most supported input formats of interest to mixed-precision algorithm developers: 8-, 16-, and 19-bit floating point.
Related Topics
- Type
- preprint
- Landing Page
- https://doi.org/10.48550/arxiv.2512.07004
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7110955317
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7110955317Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2512.07004Digital Object Identifier
- Title
-
Accurate Models of NVIDIA Tensor CoresWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-07Full publication date if available
- Authors
-
Khattak, Faizan A., Mikaitis, MantasList of authors in order
- Landing page
-
https://doi.org/10.48550/arxiv.2512.07004Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.48550/arxiv.2512.07004Direct OA link when available
- Concepts
-
Matrix multiplication, Computer science, Rounding, Computational science, Parallel computing, Software, Matrix (chemical analysis), Algorithm, Normalization (sociology), Floating point, Computation, Throughput, Computer engineering, Round-off error, Arithmetic, Matrix decomposition, Matrix representation, Computer hardware, Double-precision floating-point format, Single-precision floating-point format, Theoretical computer science, Outer product, Numerical linear algebra, Adder, Digital signal processing, Sparse matrix, Product (mathematics), Artificial neural network, State-transition matrix, Signal processing, Dot product, Carry (investment)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7110955317 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2512.07004 |
| ids.doi | https://doi.org/10.48550/arxiv.2512.07004 |
| ids.openalex | https://openalex.org/W7110955317 |
| fwci | |
| type | preprint |
| title | Accurate Models of NVIDIA Tensor Cores |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C17349429 |
| concepts[0].level | 3 |
| concepts[0].score | 0.689080536365509 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1049914 |
| concepts[0].display_name | Matrix multiplication |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6807503700256348 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C136625980 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5970740914344788 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q663208 |
| concepts[2].display_name | Rounding |
| concepts[3].id | https://openalex.org/C459310 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5424062609672546 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q117801 |
| concepts[3].display_name | Computational science |
| concepts[4].id | https://openalex.org/C173608175 |
| concepts[4].level | 1 |
| concepts[4].score | 0.515317440032959 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[4].display_name | Parallel computing |
| concepts[5].id | https://openalex.org/C2777904410 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5005350112915039 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[5].display_name | Software |
| concepts[6].id | https://openalex.org/C106487976 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47536295652389526 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[6].display_name | Matrix (chemical analysis) |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.45863446593284607 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C136886441 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4088781774044037 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q926129 |
| concepts[8].display_name | Normalization (sociology) |
| concepts[9].id | https://openalex.org/C84211073 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3627423644065857 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q117879 |
| concepts[9].display_name | Floating point |
| concepts[10].id | https://openalex.org/C45374587 |
| concepts[10].level | 2 |
| concepts[10].score | 0.35708311200141907 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[10].display_name | Computation |
| concepts[11].id | https://openalex.org/C157764524 |
| concepts[11].level | 3 |
| concepts[11].score | 0.34747445583343506 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1383412 |
| concepts[11].display_name | Throughput |
| concepts[12].id | https://openalex.org/C113775141 |
| concepts[12].level | 1 |
| concepts[12].score | 0.332026869058609 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q428691 |
| concepts[12].display_name | Computer engineering |
| concepts[13].id | https://openalex.org/C61005703 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3276170492172241 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2145211 |
| concepts[13].display_name | Round-off error |
| concepts[14].id | https://openalex.org/C94375191 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3269237279891968 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11205 |
| concepts[14].display_name | Arithmetic |
| concepts[15].id | https://openalex.org/C42355184 |
| concepts[15].level | 3 |
| concepts[15].score | 0.3166131377220154 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1361088 |
| concepts[15].display_name | Matrix decomposition |
| concepts[16].id | https://openalex.org/C103275481 |
| concepts[16].level | 3 |
| concepts[16].score | 0.31368663907051086 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q6787889 |
| concepts[16].display_name | Matrix representation |
| concepts[17].id | https://openalex.org/C9390403 |
| concepts[17].level | 1 |
| concepts[17].score | 0.31258517503738403 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q3966 |
| concepts[17].display_name | Computer hardware |
| concepts[18].id | https://openalex.org/C35912277 |
| concepts[18].level | 3 |
| concepts[18].score | 0.3053760230541229 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1243369 |
| concepts[18].display_name | Double-precision floating-point format |
| concepts[19].id | https://openalex.org/C133095886 |
| concepts[19].level | 3 |
| concepts[19].score | 0.30064716935157776 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1307173 |
| concepts[19].display_name | Single-precision floating-point format |
| concepts[20].id | https://openalex.org/C80444323 |
| concepts[20].level | 1 |
| concepts[20].score | 0.29106608033180237 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[20].display_name | Theoretical computer science |
| concepts[21].id | https://openalex.org/C180623205 |
| concepts[21].level | 3 |
| concepts[21].score | 0.28968989849090576 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q1268589 |
| concepts[21].display_name | Outer product |
| concepts[22].id | https://openalex.org/C163834973 |
| concepts[22].level | 3 |
| concepts[22].score | 0.2840869426727295 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q2004891 |
| concepts[22].display_name | Numerical linear algebra |
| concepts[23].id | https://openalex.org/C164620267 |
| concepts[23].level | 3 |
| concepts[23].score | 0.2818831205368042 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q376953 |
| concepts[23].display_name | Adder |
| concepts[24].id | https://openalex.org/C84462506 |
| concepts[24].level | 2 |
| concepts[24].score | 0.28096747398376465 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q173142 |
| concepts[24].display_name | Digital signal processing |
| concepts[25].id | https://openalex.org/C56372850 |
| concepts[25].level | 3 |
| concepts[25].score | 0.2788136899471283 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q1050404 |
| concepts[25].display_name | Sparse matrix |
| concepts[26].id | https://openalex.org/C90673727 |
| concepts[26].level | 2 |
| concepts[26].score | 0.2777872085571289 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q901718 |
| concepts[26].display_name | Product (mathematics) |
| concepts[27].id | https://openalex.org/C50644808 |
| concepts[27].level | 2 |
| concepts[27].score | 0.27092039585113525 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[27].display_name | Artificial neural network |
| concepts[28].id | https://openalex.org/C22629506 |
| concepts[28].level | 4 |
| concepts[28].score | 0.26330068707466125 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q7602993 |
| concepts[28].display_name | State-transition matrix |
| concepts[29].id | https://openalex.org/C104267543 |
| concepts[29].level | 3 |
| concepts[29].score | 0.2592041790485382 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q208163 |
| concepts[29].display_name | Signal processing |
| concepts[30].id | https://openalex.org/C32900221 |
| concepts[30].level | 2 |
| concepts[30].score | 0.25536975264549255 |
| concepts[30].wikidata | https://www.wikidata.org/wiki/Q181365 |
| concepts[30].display_name | Dot product |
| concepts[31].id | https://openalex.org/C2776299755 |
| concepts[31].level | 2 |
| concepts[31].score | 0.2517137825489044 |
| concepts[31].wikidata | https://www.wikidata.org/wiki/Q432449 |
| concepts[31].display_name | Carry (investment) |
| keywords[0].id | https://openalex.org/keywords/matrix-multiplication |
| keywords[0].score | 0.689080536365509 |
| keywords[0].display_name | Matrix multiplication |
| keywords[1].id | https://openalex.org/keywords/rounding |
| keywords[1].score | 0.5970740914344788 |
| keywords[1].display_name | Rounding |
| keywords[2].id | https://openalex.org/keywords/software |
| keywords[2].score | 0.5005350112915039 |
| keywords[2].display_name | Software |
| keywords[3].id | https://openalex.org/keywords/matrix |
| keywords[3].score | 0.47536295652389526 |
| keywords[3].display_name | Matrix (chemical analysis) |
| keywords[4].id | https://openalex.org/keywords/normalization |
| keywords[4].score | 0.4088781774044037 |
| keywords[4].display_name | Normalization (sociology) |
| keywords[5].id | https://openalex.org/keywords/floating-point |
| keywords[5].score | 0.3627423644065857 |
| keywords[5].display_name | Floating point |
| keywords[6].id | https://openalex.org/keywords/computation |
| keywords[6].score | 0.35708311200141907 |
| keywords[6].display_name | Computation |
| keywords[7].id | https://openalex.org/keywords/throughput |
| keywords[7].score | 0.34747445583343506 |
| keywords[7].display_name | Throughput |
| keywords[8].id | https://openalex.org/keywords/round-off-error |
| keywords[8].score | 0.3276170492172241 |
| keywords[8].display_name | Round-off error |
| language | |
| locations[0].id | doi:10.48550/arxiv.2512.07004 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.48550/arxiv.2512.07004 |
| indexed_in | datacite |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Khattak, Faizan A. |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Khattak, Faizan A. |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A4289166222 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Mikaitis, Mantas |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Mikaitis, Mantas |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.48550/arxiv.2512.07004 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-10T00:00:00 |
| display_name | Accurate Models of NVIDIA Tensor Cores |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-10T02:49:46.989445 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.48550/arxiv.2512.07004 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.48550/arxiv.2512.07004 |
| primary_location.id | doi:10.48550/arxiv.2512.07004 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.48550/arxiv.2512.07004 |
| publication_date | 2025-12-07 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3 |
| abstract_inverted_index.AI | 58 |
| abstract_inverted_index.To | 15, 94 |
| abstract_inverted_index.We | 144 |
| abstract_inverted_index.as | 101 |
| abstract_inverted_index.at | 57, 60, 88 |
| abstract_inverted_index.in | 6, 26, 50, 160, 170 |
| abstract_inverted_index.is | 2 |
| abstract_inverted_index.it | 24 |
| abstract_inverted_index.of | 10, 44, 85, 98, 154, 175 |
| abstract_inverted_index.or | 121 |
| abstract_inverted_index.to | 29, 46, 79, 131, 177 |
| abstract_inverted_index.754 | 66 |
| abstract_inverted_index.8-, | 181 |
| abstract_inverted_index.AI, | 45 |
| abstract_inverted_index.Due | 28 |
| abstract_inverted_index.GPU | 86 |
| abstract_inverted_index.and | 13, 111, 129, 156, 165, 183 |
| abstract_inverted_index.are | 40, 59, 114 |
| abstract_inverted_index.due | 130 |
| abstract_inverted_index.for | 7, 148 |
| abstract_inverted_index.may | 120, 122 |
| abstract_inverted_index.not | 62, 123 |
| abstract_inverted_index.the | 30, 34, 38, 89, 150, 161 |
| abstract_inverted_index.16-, | 182 |
| abstract_inverted_index.B200 | 166 |
| abstract_inverted_index.GPUs | 169 |
| abstract_inverted_index.H100 | 164 |
| abstract_inverted_index.IEEE | 65 |
| abstract_inverted_index.This | 77 |
| abstract_inverted_index.Yet, | 117 |
| abstract_inverted_index.both | 8 |
| abstract_inverted_index.data | 167 |
| abstract_inverted_index.low- | 155 |
| abstract_inverted_index.many | 138 |
| abstract_inverted_index.most | 171 |
| abstract_inverted_index.over | 33 |
| abstract_inverted_index.used | 42 |
| abstract_inverted_index.with | 64, 70 |
| abstract_inverted_index.A100, | 163 |
| abstract_inverted_index.Units | 21 |
| abstract_inverted_index.V100, | 162 |
| abstract_inverted_index.bits, | 110 |
| abstract_inverted_index.carry | 109 |
| abstract_inverted_index.extra | 108 |
| abstract_inverted_index.inner | 151 |
| abstract_inverted_index.input | 173 |
| abstract_inverted_index.leads | 78 |
| abstract_inverted_index.study | 95 |
| abstract_inverted_index.their | 135 |
| abstract_inverted_index.these | 118 |
| abstract_inverted_index.(GPUs) | 22 |
| abstract_inverted_index.19-bit | 184 |
| abstract_inverted_index.Matrix | 0 |
| abstract_inverted_index.across | 82, 137 |
| abstract_inverted_index.center | 168 |
| abstract_inverted_index.level. | 93 |
| abstract_inverted_index.matrix | 17, 36, 54, 90, 99, 158 |
| abstract_inverted_index.models | 147 |
| abstract_inverted_index.neural | 11 |
| abstract_inverted_index.point. | 186 |
| abstract_inverted_index.width, | 105 |
| abstract_inverted_index.between | 125 |
| abstract_inverted_index.formats | 174 |
| abstract_inverted_index.largely | 142 |
| abstract_inverted_index.limited | 132 |
| abstract_inverted_index.models, | 128 |
| abstract_inverted_index.outside | 43 |
| abstract_inverted_index.points, | 107 |
| abstract_inverted_index.present | 61, 145 |
| abstract_inverted_index.product | 152 |
| abstract_inverted_index.provide | 23 |
| abstract_inverted_index.remains | 141 |
| abstract_inverted_index.results | 81 |
| abstract_inverted_index.various | 48 |
| abstract_inverted_index.vectors | 113, 119 |
| abstract_inverted_index.vendors | 72 |
| abstract_inverted_index.However, | 53 |
| abstract_inverted_index.behavior | 153 |
| abstract_inverted_index.floating | 185 |
| abstract_inverted_index.hardware | 127, 133 |
| abstract_inverted_index.interest | 176 |
| abstract_inverted_index.networks | 12 |
| abstract_inverted_index.offering | 73 |
| abstract_inverted_index.rounding | 102 |
| abstract_inverted_index.software | 146 |
| abstract_inverted_index.targeted | 56 |
| abstract_inverted_index.training | 9 |
| abstract_inverted_index.Graphical | 19 |
| abstract_inverted_index.algorithm | 179 |
| abstract_inverted_index.compliant | 63 |
| abstract_inverted_index.different | 71, 74, 83, 126, 139 |
| abstract_inverted_index.emulating | 149 |
| abstract_inverted_index.features. | 76 |
| abstract_inverted_index.hardware. | 27 |
| abstract_inverted_index.increased | 31 |
| abstract_inverted_index.numerical | 75, 96 |
| abstract_inverted_index.operation | 5 |
| abstract_inverted_index.platforms | 140 |
| abstract_inverted_index.supported | 172 |
| abstract_inverted_index.typically | 115 |
| abstract_inverted_index.untested. | 143 |
| abstract_inverted_index.Processing | 20 |
| abstract_inverted_index.accelerate | 16, 47 |
| abstract_inverted_index.arithmetic | 68 |
| abstract_inverted_index.behaviour, | 69, 103 |
| abstract_inverted_index.computing. | 52 |
| abstract_inverted_index.inference. | 14 |
| abstract_inverted_index.scientific | 51 |
| abstract_inverted_index.throughput | 32 |
| abstract_inverted_index.accumulator | 104 |
| abstract_inverted_index.developers: | 180 |
| abstract_inverted_index.distinguish | 124 |
| abstract_inverted_index.fundamental | 4 |
| abstract_inverted_index.generations | 84 |
| abstract_inverted_index.implemented | 25 |
| abstract_inverted_index.instruction | 92 |
| abstract_inverted_index.multipliers | 39, 55, 159 |
| abstract_inverted_index.others-test | 112 |
| abstract_inverted_index.reliability | 136 |
| abstract_inverted_index.applications | 49 |
| abstract_inverted_index.constructed. | 116 |
| abstract_inverted_index.increasingly | 41 |
| abstract_inverted_index.availability, | 134 |
| abstract_inverted_index.normalization | 106 |
| abstract_inverted_index.architectures, | 87 |
| abstract_inverted_index.floating-point | 67 |
| abstract_inverted_index.multiplication | 1 |
| abstract_inverted_index.software-based | 35 |
| abstract_inverted_index.characteristics | 97 |
| abstract_inverted_index.mixed-precision | 157, 178 |
| abstract_inverted_index.multiplication, | 18, 37 |
| abstract_inverted_index.multipliers-such | 100 |
| abstract_inverted_index.non-reproducible | 80 |
| abstract_inverted_index.multiply-accumulate | 91 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |