Accurate Pocket Identification for Binding-Site-Agnostic Docking Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.20944/preprints202502.0352.v2
Accurate identification of druggable pockets and their features is essential for structure-based drug design and effective downstream docking. Here, we present RAPID-Net, a deep learning-based algorithm designed for the accurate prediction of binding pockets and seamless integration with docking pipelines. On the PoseBusters benchmark, RAPID-Net–guided AutoDock Vina achieves 54.9% of Top-1 poses with RMSD <2 A and satisfying the PoseBusters chemical‐validity criterion, compared to 49.1% for DiffBindFR. On the most challenging time split of PoseBusters aiming to assess generalization ability (structures submitted after September 30, 2021), RAPID-Net-guided AutoDock Vina achieves 53.1% of Top-1 poses with RMSD < 2 A and PB-valid, versus 59.5% for AlphaFold 3. Notably, in 92.2% of cases, RAPID-Net-guided Vina samples at least one pose with RMSD < 2 A (regardless of its rank), indicating that pose ranking, rather than sampling, is the primary accuracy bottleneck. The lightweight inference, scalability, and competitive accuracy of RAPID-Net position it as a viable option for large-scale virtual screening campaigns. Across diverse benchmark datasets, RAPID-Net outperforms other pocket prediction tools, including PUResNet and Kalasanty, in both docking accuracy and pocket–ligand intersection rates. Furthermore, we demonstrate the potential of RAPID-Net to accelerate the development of novel therapeutics by highlighting its performance on pharmacologically relevant targets. RAPID-Net accurately identifies distal functional sites, offering new opportunities for allosteric inhibitor design. In the case of the RNA-dependent RNA polymerase of SARS-CoV-2, RAPID-Net uncovers a wider array of potential binding pockets than existing predictors, which typically annotate only the orthosteric pocket and overlook secondary cavities.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.20944/preprints202502.0352.v2
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407186348
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407186348Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20944/preprints202502.0352.v2Digital Object Identifier
- Title
-
Accurate Pocket Identification for Binding-Site-Agnostic DockingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-24Full publication date if available
- Authors
-
Yaroslav Balytskyi, Inna Hubenko, Alina Balytska, Christopher V. KellyList of authors in order
- Landing page
-
https://doi.org/10.20944/preprints202502.0352.v2Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.20944/preprints202502.0352.v2Direct OA link when available
- Concepts
-
Docking (animal), Identification (biology), Binding site, Computer science, Computational biology, Chemistry, Medicine, Biology, Biochemistry, Botany, NursingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407186348 |
|---|---|
| doi | https://doi.org/10.20944/preprints202502.0352.v2 |
| ids.doi | https://doi.org/10.20944/preprints202502.0352.v2 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39975446 |
| ids.openalex | https://openalex.org/W4407186348 |
| fwci | |
| type | preprint |
| title | Accurate Pocket Identification for Binding-Site-Agnostic Docking |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T10521 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9815000295639038 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | RNA and protein synthesis mechanisms |
| topics[2].id | https://openalex.org/T11948 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.9599999785423279 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2505 |
| topics[2].subfield.display_name | Materials Chemistry |
| topics[2].display_name | Machine Learning in Materials Science |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41685203 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7036290168762207 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1974042 |
| concepts[0].display_name | Docking (animal) |
| concepts[1].id | https://openalex.org/C116834253 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6033515930175781 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[1].display_name | Identification (biology) |
| concepts[2].id | https://openalex.org/C107824862 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4979817867279053 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q616005 |
| concepts[2].display_name | Binding site |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4848124086856842 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C70721500 |
| concepts[4].level | 1 |
| concepts[4].score | 0.43121153116226196 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[4].display_name | Computational biology |
| concepts[5].id | https://openalex.org/C185592680 |
| concepts[5].level | 0 |
| concepts[5].score | 0.28867971897125244 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[5].display_name | Chemistry |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.17326554656028748 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.16787561774253845 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| concepts[8].id | https://openalex.org/C55493867 |
| concepts[8].level | 1 |
| concepts[8].score | 0.09760388731956482 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[8].display_name | Biochemistry |
| concepts[9].id | https://openalex.org/C59822182 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[9].display_name | Botany |
| concepts[10].id | https://openalex.org/C159110408 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q121176 |
| concepts[10].display_name | Nursing |
| keywords[0].id | https://openalex.org/keywords/docking |
| keywords[0].score | 0.7036290168762207 |
| keywords[0].display_name | Docking (animal) |
| keywords[1].id | https://openalex.org/keywords/identification |
| keywords[1].score | 0.6033515930175781 |
| keywords[1].display_name | Identification (biology) |
| keywords[2].id | https://openalex.org/keywords/binding-site |
| keywords[2].score | 0.4979817867279053 |
| keywords[2].display_name | Binding site |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4848124086856842 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/computational-biology |
| keywords[4].score | 0.43121153116226196 |
| keywords[4].display_name | Computational biology |
| keywords[5].id | https://openalex.org/keywords/chemistry |
| keywords[5].score | 0.28867971897125244 |
| keywords[5].display_name | Chemistry |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.17326554656028748 |
| keywords[6].display_name | Medicine |
| keywords[7].id | https://openalex.org/keywords/biology |
| keywords[7].score | 0.16787561774253845 |
| keywords[7].display_name | Biology |
| keywords[8].id | https://openalex.org/keywords/biochemistry |
| keywords[8].score | 0.09760388731956482 |
| keywords[8].display_name | Biochemistry |
| language | en |
| locations[0].id | doi:10.20944/preprints202502.0352.v2 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S6309402219 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Preprints.org |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.20944/preprints202502.0352.v2 |
| locations[1].id | pmid:39975446 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | ArXiv |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39975446 |
| locations[2].id | pmh:oai:arXiv.org:2502.02371 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | https://arxiv.org/pdf/2502.02371 |
| locations[2].version | submittedVersion |
| locations[2].raw_type | text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://arxiv.org/abs/2502.02371 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11838782 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | ArXiv |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11838782 |
| indexed_in | arxiv, crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5084784013 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7582-6232 |
| authorships[0].author.display_name | Yaroslav Balytskyi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yaroslav Balytskyi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5093112855 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3798-6489 |
| authorships[1].author.display_name | Inna Hubenko |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Inna Hubenko |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5079289079 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1070-5632 |
| authorships[2].author.display_name | Alina Balytska |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Alina Balytska |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5023125955 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0886-8691 |
| authorships[3].author.display_name | Christopher V. Kelly |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Christopher V Kelly |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.20944/preprints202502.0352.v2 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-02-06T00:00:00 |
| display_name | Accurate Pocket Identification for Binding-Site-Agnostic Docking |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.20944/preprints202502.0352.v2 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S6309402219 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Preprints.org |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.20944/preprints202502.0352.v2 |
| primary_location.id | doi:10.20944/preprints202502.0352.v2 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S6309402219 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Preprints.org |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.20944/preprints202502.0352.v2 |
| publication_date | 2025-07-24 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.2 | 97, 121 |
| abstract_inverted_index.A | 55, 98, 122 |
| abstract_inverted_index.a | 22, 151, 228 |
| abstract_inverted_index.3. | 105 |
| abstract_inverted_index.In | 216 |
| abstract_inverted_index.On | 40, 67 |
| abstract_inverted_index.as | 150 |
| abstract_inverted_index.at | 114 |
| abstract_inverted_index.by | 195 |
| abstract_inverted_index.in | 107, 173 |
| abstract_inverted_index.is | 8, 134 |
| abstract_inverted_index.it | 149 |
| abstract_inverted_index.of | 2, 31, 49, 73, 91, 109, 124, 146, 186, 192, 219, 224, 231 |
| abstract_inverted_index.on | 199 |
| abstract_inverted_index.to | 63, 76, 188 |
| abstract_inverted_index.we | 19, 182 |
| abstract_inverted_index.30, | 84 |
| abstract_inverted_index.RNA | 222 |
| abstract_inverted_index.The | 139 |
| abstract_inverted_index.and | 5, 14, 34, 56, 99, 143, 171, 177, 245 |
| abstract_inverted_index.for | 10, 27, 65, 103, 154, 212 |
| abstract_inverted_index.its | 125, 197 |
| abstract_inverted_index.new | 210 |
| abstract_inverted_index.one | 116 |
| abstract_inverted_index.the | 28, 41, 58, 68, 135, 184, 190, 217, 220, 242 |
| abstract_inverted_index.RMSD | 53, 95, 119 |
| abstract_inverted_index.Vina | 46, 88, 112 |
| abstract_inverted_index.both | 174 |
| abstract_inverted_index.case | 218 |
| abstract_inverted_index.deep | 23 |
| abstract_inverted_index.drug | 12 |
| abstract_inverted_index.most | 69 |
| abstract_inverted_index.only | 241 |
| abstract_inverted_index.pose | 117, 129 |
| abstract_inverted_index.than | 132, 235 |
| abstract_inverted_index.that | 128 |
| abstract_inverted_index.time | 71 |
| abstract_inverted_index.with | 37, 52, 94, 118 |
| abstract_inverted_index.49.1% | 64 |
| abstract_inverted_index.53.1% | 90 |
| abstract_inverted_index.54.9% | 48 |
| abstract_inverted_index.59.5% | 102 |
| abstract_inverted_index.92.2% | 108 |
| abstract_inverted_index.Here, | 18 |
| abstract_inverted_index.Top-1 | 50, 92 |
| abstract_inverted_index.after | 82 |
| abstract_inverted_index.array | 230 |
| abstract_inverted_index.least | 115 |
| abstract_inverted_index.novel | 193 |
| abstract_inverted_index.other | 165 |
| abstract_inverted_index.poses | 51, 93 |
| abstract_inverted_index.split | 72 |
| abstract_inverted_index.their | 6 |
| abstract_inverted_index.which | 238 |
| abstract_inverted_index.wider | 229 |
| abstract_inverted_index.2021), | 85 |
| abstract_inverted_index.Across | 159 |
| abstract_inverted_index.aiming | 75 |
| abstract_inverted_index.assess | 77 |
| abstract_inverted_index.cases, | 110 |
| abstract_inverted_index.design | 13 |
| abstract_inverted_index.distal | 206 |
| abstract_inverted_index.option | 153 |
| abstract_inverted_index.pocket | 166, 244 |
| abstract_inverted_index.rank), | 126 |
| abstract_inverted_index.rates. | 180 |
| abstract_inverted_index.rather | 131 |
| abstract_inverted_index.sites, | 208 |
| abstract_inverted_index.tools, | 168 |
| abstract_inverted_index.versus | 101 |
| abstract_inverted_index.viable | 152 |
| abstract_inverted_index.ability | 79 |
| abstract_inverted_index.binding | 32, 233 |
| abstract_inverted_index.design. | 215 |
| abstract_inverted_index.diverse | 160 |
| abstract_inverted_index.docking | 38, 175 |
| abstract_inverted_index.pockets | 4, 33, 234 |
| abstract_inverted_index.present | 20 |
| abstract_inverted_index.primary | 136 |
| abstract_inverted_index.samples | 113 |
| abstract_inverted_index.virtual | 156 |
| abstract_inverted_index.&lt; | 96, 120 |
| abstract_inverted_index.Accurate | 0 |
| abstract_inverted_index.AutoDock | 45, 87 |
| abstract_inverted_index.Notably, | 106 |
| abstract_inverted_index.PUResNet | 170 |
| abstract_inverted_index.accuracy | 137, 145, 176 |
| abstract_inverted_index.accurate | 29 |
| abstract_inverted_index.achieves | 47, 89 |
| abstract_inverted_index.annotate | 240 |
| abstract_inverted_index.compared | 62 |
| abstract_inverted_index.designed | 26 |
| abstract_inverted_index.docking. | 17 |
| abstract_inverted_index.existing | 236 |
| abstract_inverted_index.features | 7 |
| abstract_inverted_index.offering | 209 |
| abstract_inverted_index.overlook | 246 |
| abstract_inverted_index.position | 148 |
| abstract_inverted_index.ranking, | 130 |
| abstract_inverted_index.relevant | 201 |
| abstract_inverted_index.seamless | 35 |
| abstract_inverted_index.targets. | 202 |
| abstract_inverted_index.uncovers | 227 |
| abstract_inverted_index.&lt;2 | 54 |
| abstract_inverted_index.AlphaFold | 104 |
| abstract_inverted_index.PB-valid, | 100 |
| abstract_inverted_index.RAPID-Net | 147, 163, 187, 203, 226 |
| abstract_inverted_index.September | 83 |
| abstract_inverted_index.algorithm | 25 |
| abstract_inverted_index.benchmark | 161 |
| abstract_inverted_index.cavities. | 248 |
| abstract_inverted_index.datasets, | 162 |
| abstract_inverted_index.druggable | 3 |
| abstract_inverted_index.effective | 15 |
| abstract_inverted_index.essential | 9 |
| abstract_inverted_index.including | 169 |
| abstract_inverted_index.inhibitor | 214 |
| abstract_inverted_index.potential | 185, 232 |
| abstract_inverted_index.sampling, | 133 |
| abstract_inverted_index.screening | 157 |
| abstract_inverted_index.secondary | 247 |
| abstract_inverted_index.submitted | 81 |
| abstract_inverted_index.typically | 239 |
| abstract_inverted_index.Kalasanty, | 172 |
| abstract_inverted_index.RAPID-Net, | 21 |
| abstract_inverted_index.accelerate | 189 |
| abstract_inverted_index.accurately | 204 |
| abstract_inverted_index.allosteric | 213 |
| abstract_inverted_index.benchmark, | 43 |
| abstract_inverted_index.campaigns. | 158 |
| abstract_inverted_index.criterion, | 61 |
| abstract_inverted_index.downstream | 16 |
| abstract_inverted_index.functional | 207 |
| abstract_inverted_index.identifies | 205 |
| abstract_inverted_index.indicating | 127 |
| abstract_inverted_index.inference, | 141 |
| abstract_inverted_index.pipelines. | 39 |
| abstract_inverted_index.polymerase | 223 |
| abstract_inverted_index.prediction | 30, 167 |
| abstract_inverted_index.satisfying | 57 |
| abstract_inverted_index.(regardless | 123 |
| abstract_inverted_index.(structures | 80 |
| abstract_inverted_index.DiffBindFR. | 66 |
| abstract_inverted_index.PoseBusters | 42, 59, 74 |
| abstract_inverted_index.SARS-CoV-2, | 225 |
| abstract_inverted_index.bottleneck. | 138 |
| abstract_inverted_index.challenging | 70 |
| abstract_inverted_index.competitive | 144 |
| abstract_inverted_index.demonstrate | 183 |
| abstract_inverted_index.development | 191 |
| abstract_inverted_index.integration | 36 |
| abstract_inverted_index.large-scale | 155 |
| abstract_inverted_index.lightweight | 140 |
| abstract_inverted_index.orthosteric | 243 |
| abstract_inverted_index.outperforms | 164 |
| abstract_inverted_index.performance | 198 |
| abstract_inverted_index.predictors, | 237 |
| abstract_inverted_index.Furthermore, | 181 |
| abstract_inverted_index.highlighting | 196 |
| abstract_inverted_index.intersection | 179 |
| abstract_inverted_index.scalability, | 142 |
| abstract_inverted_index.therapeutics | 194 |
| abstract_inverted_index.RNA-dependent | 221 |
| abstract_inverted_index.opportunities | 211 |
| abstract_inverted_index.generalization | 78 |
| abstract_inverted_index.identification | 1 |
| abstract_inverted_index.learning-based | 24 |
| abstract_inverted_index.pocket–ligand | 178 |
| abstract_inverted_index.structure-based | 11 |
| abstract_inverted_index.RAPID-Net-guided | 86, 111 |
| abstract_inverted_index.pharmacologically | 200 |
| abstract_inverted_index.RAPID-Net–guided | 44 |
| abstract_inverted_index.chemical‐validity | 60 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.04638292 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |