Accurate Rural Road Network With Improved Dataset for Strengthen Wildfire Emergency Response Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3600192
Wildfires pose significant threats to ecosystems worldwide, making rapid firefighting responses essential. Firefighters face major challenges in advanced-stage fires, highlighting the need for early detection and improved operational support. However, current rural road mapping methods often fail under occlusions from vegetation and shadows, lack adaptability to wildfire-prone regions, and offer limited automation for large-scale applications. This study introduces a system that integrates U-Net-based deep learning architectures with post-processing to detect rural roads from aerial imagery. A manually annotated dataset of 1,044 orthorectified aerial images from wildfire-prone areas was augmented to 4,700 samples to improve segmentation robustness under occlusion. The system follows a two-step process: rural road segmentation and post-processing to remove small connected components and reconnect occluded road segments. Four architectures: VGG16 U-Net, VGG19 U-Net, ResNet50 U-Net, and MobileNet U-Net were tested with extensive hyperparameter tuning, both before and after augmentation. Data augmentation significantly improved performance, with post-processing providing modest yet consistent gains. The best results reached 85.1% Precision, 81.9% Recall, and a 71.7% Jaccard index. MobileNet U-Net showed the largest post-processing improvement. Overall, the approach enables automated, accurate rural road mapping to support operational wildfire response, offering a practical and adaptable tool for crisis management.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3600192
- OA Status
- gold
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413318868
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413318868Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3600192Digital Object Identifier
- Title
-
Accurate Rural Road Network With Improved Dataset for Strengthen Wildfire Emergency ResponseWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Miguel Lourenço, Duarte O. Caetano, André Mora, Luís B. Oliveira, Henrique OliveiraList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3600192Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3600192Direct OA link when available
- Concepts
-
Emergency response, Disaster response, Computer science, Emergency management, Remote sensing, Medical emergency, Geography, Medicine, Political science, LawTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413318868 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3600192 |
| ids.doi | https://doi.org/10.1109/access.2025.3600192 |
| ids.openalex | https://openalex.org/W4413318868 |
| fwci | 0.0 |
| type | article |
| title | Accurate Rural Road Network With Improved Dataset for Strengthen Wildfire Emergency Response |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 147001 |
| biblio.first_page | 146983 |
| grants[0].funder | https://openalex.org/F4320334779 |
| grants[0].award_id | 2021.06054.BD |
| grants[0].funder_display_name | Fundação para a Ciência e a Tecnologia |
| grants[1].funder | https://openalex.org/F4320334779 |
| grants[1].award_id | CTS/00066 |
| grants[1].funder_display_name | Fundação para a Ciência e a Tecnologia |
| topics[0].id | https://openalex.org/T10555 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9660000205039978 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Fire effects on ecosystems |
| topics[1].id | https://openalex.org/T12597 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.960099995136261 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2213 |
| topics[1].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[1].display_name | Fire Detection and Safety Systems |
| funders[0].id | https://openalex.org/F4320334779 |
| funders[0].ror | https://ror.org/00snfqn58 |
| funders[0].display_name | Fundação para a Ciência e a Tecnologia |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C3017997152 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6942789554595947 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q814610 |
| concepts[0].display_name | Emergency response |
| concepts[1].id | https://openalex.org/C3018653863 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5626667737960815 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5281355 |
| concepts[1].display_name | Disaster response |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5090217590332031 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C62555980 |
| concepts[3].level | 2 |
| concepts[3].score | 0.49339261651039124 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1460420 |
| concepts[3].display_name | Emergency management |
| concepts[4].id | https://openalex.org/C62649853 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3250734508037567 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[4].display_name | Remote sensing |
| concepts[5].id | https://openalex.org/C545542383 |
| concepts[5].level | 1 |
| concepts[5].score | 0.25470030307769775 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2751242 |
| concepts[5].display_name | Medical emergency |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.16598999500274658 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C71924100 |
| concepts[7].level | 0 |
| concepts[7].score | 0.105467289686203 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[7].display_name | Medicine |
| concepts[8].id | https://openalex.org/C17744445 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[8].display_name | Political science |
| concepts[9].id | https://openalex.org/C199539241 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[9].display_name | Law |
| keywords[0].id | https://openalex.org/keywords/emergency-response |
| keywords[0].score | 0.6942789554595947 |
| keywords[0].display_name | Emergency response |
| keywords[1].id | https://openalex.org/keywords/disaster-response |
| keywords[1].score | 0.5626667737960815 |
| keywords[1].display_name | Disaster response |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5090217590332031 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/emergency-management |
| keywords[3].score | 0.49339261651039124 |
| keywords[3].display_name | Emergency management |
| keywords[4].id | https://openalex.org/keywords/remote-sensing |
| keywords[4].score | 0.3250734508037567 |
| keywords[4].display_name | Remote sensing |
| keywords[5].id | https://openalex.org/keywords/medical-emergency |
| keywords[5].score | 0.25470030307769775 |
| keywords[5].display_name | Medical emergency |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.16598999500274658 |
| keywords[6].display_name | Geography |
| keywords[7].id | https://openalex.org/keywords/medicine |
| keywords[7].score | 0.105467289686203 |
| keywords[7].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3600192 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3600192 |
| locations[1].id | pmh:oai:run.unl.pt:10362/187558 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400678 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Universidade Nova de Lisboa's Repository (Universidade Nova de Lisboa) |
| locations[1].source.host_organization | https://openalex.org/I83558840 |
| locations[1].source.host_organization_name | Universidade Nova de Lisboa |
| locations[1].source.host_organization_lineage | https://openalex.org/I83558840 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/10362/187558 |
| locations[2].id | pmh:oai:doaj.org/article:2e1e03592aac41e3bbb0bbb868b9d499 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].source.host_organization_lineage | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | IEEE Access, Vol 13, Pp 146983-147001 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/2e1e03592aac41e3bbb0bbb868b9d499 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5024756794 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5767-3394 |
| authorships[0].author.display_name | Miguel Lourenço |
| authorships[0].countries | PT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I83558840 |
| authorships[0].affiliations[0].raw_affiliation_string | Center of Technology and Systems (UNINOVA-CTS) and Associated Lab of Intelligent Systems (LASI), NOVA School of Science and Technology, NOVA, University Lisbon, Lisbon, Portugal |
| authorships[0].institutions[0].id | https://openalex.org/I83558840 |
| authorships[0].institutions[0].ror | https://ror.org/02xankh89 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I83558840 |
| authorships[0].institutions[0].country_code | PT |
| authorships[0].institutions[0].display_name | Universidade Nova de Lisboa |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Miguel Lourenço |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Center of Technology and Systems (UNINOVA-CTS) and Associated Lab of Intelligent Systems (LASI), NOVA School of Science and Technology, NOVA, University Lisbon, Lisbon, Portugal |
| authorships[1].author.id | https://openalex.org/A5119347329 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Duarte O. Caetano |
| authorships[1].countries | PT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I83558840 |
| authorships[1].affiliations[0].raw_affiliation_string | Center of Technology and Systems (UNINOVA-CTS) and Associated Lab of Intelligent Systems (LASI), NOVA School of Science and Technology, NOVA, University Lisbon, Lisbon, Portugal |
| authorships[1].institutions[0].id | https://openalex.org/I83558840 |
| authorships[1].institutions[0].ror | https://ror.org/02xankh89 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I83558840 |
| authorships[1].institutions[0].country_code | PT |
| authorships[1].institutions[0].display_name | Universidade Nova de Lisboa |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Duarte O. Caetano |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Center of Technology and Systems (UNINOVA-CTS) and Associated Lab of Intelligent Systems (LASI), NOVA School of Science and Technology, NOVA, University Lisbon, Lisbon, Portugal |
| authorships[2].author.id | https://openalex.org/A5051554638 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1354-4739 |
| authorships[2].author.display_name | André Mora |
| authorships[2].countries | PT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I83558840 |
| authorships[2].affiliations[0].raw_affiliation_string | Center of Technology and Systems (UNINOVA-CTS) and Associated Lab of Intelligent Systems (LASI), NOVA School of Science and Technology, NOVA, University Lisbon, Lisbon, Portugal |
| authorships[2].institutions[0].id | https://openalex.org/I83558840 |
| authorships[2].institutions[0].ror | https://ror.org/02xankh89 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I83558840 |
| authorships[2].institutions[0].country_code | PT |
| authorships[2].institutions[0].display_name | Universidade Nova de Lisboa |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | André Mora |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center of Technology and Systems (UNINOVA-CTS) and Associated Lab of Intelligent Systems (LASI), NOVA School of Science and Technology, NOVA, University Lisbon, Lisbon, Portugal |
| authorships[3].author.id | https://openalex.org/A5037689471 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0624-1775 |
| authorships[3].author.display_name | Luís B. Oliveira |
| authorships[3].countries | PT |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I83558840 |
| authorships[3].affiliations[0].raw_affiliation_string | Center of Technology and Systems (UNINOVA-CTS) and Associated Lab of Intelligent Systems (LASI), NOVA School of Science and Technology, NOVA, University Lisbon, Lisbon, Portugal |
| authorships[3].institutions[0].id | https://openalex.org/I83558840 |
| authorships[3].institutions[0].ror | https://ror.org/02xankh89 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I83558840 |
| authorships[3].institutions[0].country_code | PT |
| authorships[3].institutions[0].display_name | Universidade Nova de Lisboa |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Luis B. Oliveira |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Center of Technology and Systems (UNINOVA-CTS) and Associated Lab of Intelligent Systems (LASI), NOVA School of Science and Technology, NOVA, University Lisbon, Lisbon, Portugal |
| authorships[4].author.id | https://openalex.org/A5072254274 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8687-4291 |
| authorships[4].author.display_name | Henrique Oliveira |
| authorships[4].affiliations[0].raw_affiliation_string | Telecommunications Institute, Lisbon, Portugal |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Henrique Oliveira |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Telecommunications Institute, Lisbon, Portugal |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3600192 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Accurate Rural Road Network With Improved Dataset for Strengthen Wildfire Emergency Response |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10555 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9660000205039978 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Fire effects on ecosystems |
| related_works | https://openalex.org/W2505594940, https://openalex.org/W4213141119, https://openalex.org/W4411063188, https://openalex.org/W2366534746, https://openalex.org/W2336998621, https://openalex.org/W2338775065, https://openalex.org/W93111763, https://openalex.org/W2394422641, https://openalex.org/W2578808763, https://openalex.org/W2354984922 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1109/access.2025.3600192 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3600192 |
| primary_location.id | doi:10.1109/access.2025.3600192 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3600192 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4313518774, https://openalex.org/W2921476973, https://openalex.org/W3017131514, https://openalex.org/W3040231701, https://openalex.org/W2176950688, https://openalex.org/W2794284562, https://openalex.org/W2807567209, https://openalex.org/W3140854437, https://openalex.org/W2593886839, https://openalex.org/W2809254203, https://openalex.org/W3093596417, https://openalex.org/W2997604048, https://openalex.org/W2883837659, https://openalex.org/W110283499, https://openalex.org/W3013738543, https://openalex.org/W3047433257, https://openalex.org/W2908020915, https://openalex.org/W2809598685, https://openalex.org/W4380080118, https://openalex.org/W1901129140, https://openalex.org/W3123982987, https://openalex.org/W4389961031, https://openalex.org/W4220849090, https://openalex.org/W4288722736, https://openalex.org/W2967073193, https://openalex.org/W2945957599, https://openalex.org/W4213058019, https://openalex.org/W1969483458, https://openalex.org/W2995090317, https://openalex.org/W2901550124, https://openalex.org/W2963881378, https://openalex.org/W2780861787, https://openalex.org/W2194775991, https://openalex.org/W2969707169, https://openalex.org/W3195217426, https://openalex.org/W2964255128, https://openalex.org/W2048038513, https://openalex.org/W2167215479, https://openalex.org/W2141201928, https://openalex.org/W2100037535, https://openalex.org/W2011301426, https://openalex.org/W2997591727, https://openalex.org/W2897722020, https://openalex.org/W3021970402, https://openalex.org/W4399206928, https://openalex.org/W4385232265, https://openalex.org/W4399241708 |
| referenced_works_count | 47 |
| abstract_inverted_index.A | 75 |
| abstract_inverted_index.a | 58, 101, 162, 188 |
| abstract_inverted_index.in | 16 |
| abstract_inverted_index.of | 79 |
| abstract_inverted_index.to | 4, 45, 68, 89, 92, 109, 182 |
| abstract_inverted_index.The | 98, 153 |
| abstract_inverted_index.and | 25, 41, 48, 107, 114, 127, 138, 161, 190 |
| abstract_inverted_index.for | 22, 52, 193 |
| abstract_inverted_index.the | 20, 169, 174 |
| abstract_inverted_index.was | 87 |
| abstract_inverted_index.yet | 150 |
| abstract_inverted_index.Data | 141 |
| abstract_inverted_index.Four | 119 |
| abstract_inverted_index.This | 55 |
| abstract_inverted_index.best | 154 |
| abstract_inverted_index.both | 136 |
| abstract_inverted_index.deep | 63 |
| abstract_inverted_index.face | 13 |
| abstract_inverted_index.fail | 36 |
| abstract_inverted_index.from | 39, 72, 84 |
| abstract_inverted_index.lack | 43 |
| abstract_inverted_index.need | 21 |
| abstract_inverted_index.pose | 1 |
| abstract_inverted_index.road | 32, 105, 117, 180 |
| abstract_inverted_index.that | 60 |
| abstract_inverted_index.tool | 192 |
| abstract_inverted_index.were | 130 |
| abstract_inverted_index.with | 66, 132, 146 |
| abstract_inverted_index.1,044 | 80 |
| abstract_inverted_index.4,700 | 90 |
| abstract_inverted_index.71.7% | 163 |
| abstract_inverted_index.81.9% | 159 |
| abstract_inverted_index.85.1% | 157 |
| abstract_inverted_index.U-Net | 129, 167 |
| abstract_inverted_index.VGG16 | 121 |
| abstract_inverted_index.VGG19 | 123 |
| abstract_inverted_index.after | 139 |
| abstract_inverted_index.areas | 86 |
| abstract_inverted_index.early | 23 |
| abstract_inverted_index.major | 14 |
| abstract_inverted_index.offer | 49 |
| abstract_inverted_index.often | 35 |
| abstract_inverted_index.rapid | 8 |
| abstract_inverted_index.roads | 71 |
| abstract_inverted_index.rural | 31, 70, 104, 179 |
| abstract_inverted_index.small | 111 |
| abstract_inverted_index.study | 56 |
| abstract_inverted_index.under | 37, 96 |
| abstract_inverted_index.U-Net, | 122, 124, 126 |
| abstract_inverted_index.aerial | 73, 82 |
| abstract_inverted_index.before | 137 |
| abstract_inverted_index.crisis | 194 |
| abstract_inverted_index.detect | 69 |
| abstract_inverted_index.fires, | 18 |
| abstract_inverted_index.gains. | 152 |
| abstract_inverted_index.images | 83 |
| abstract_inverted_index.index. | 165 |
| abstract_inverted_index.making | 7 |
| abstract_inverted_index.modest | 149 |
| abstract_inverted_index.remove | 110 |
| abstract_inverted_index.showed | 168 |
| abstract_inverted_index.system | 59, 99 |
| abstract_inverted_index.tested | 131 |
| abstract_inverted_index.Jaccard | 164 |
| abstract_inverted_index.Recall, | 160 |
| abstract_inverted_index.current | 30 |
| abstract_inverted_index.dataset | 78 |
| abstract_inverted_index.enables | 176 |
| abstract_inverted_index.follows | 100 |
| abstract_inverted_index.improve | 93 |
| abstract_inverted_index.largest | 170 |
| abstract_inverted_index.limited | 50 |
| abstract_inverted_index.mapping | 33, 181 |
| abstract_inverted_index.methods | 34 |
| abstract_inverted_index.reached | 156 |
| abstract_inverted_index.results | 155 |
| abstract_inverted_index.samples | 91 |
| abstract_inverted_index.support | 183 |
| abstract_inverted_index.threats | 3 |
| abstract_inverted_index.tuning, | 135 |
| abstract_inverted_index.However, | 29 |
| abstract_inverted_index.Overall, | 173 |
| abstract_inverted_index.ResNet50 | 125 |
| abstract_inverted_index.accurate | 178 |
| abstract_inverted_index.approach | 175 |
| abstract_inverted_index.imagery. | 74 |
| abstract_inverted_index.improved | 26, 144 |
| abstract_inverted_index.learning | 64 |
| abstract_inverted_index.manually | 76 |
| abstract_inverted_index.occluded | 116 |
| abstract_inverted_index.offering | 187 |
| abstract_inverted_index.process: | 103 |
| abstract_inverted_index.regions, | 47 |
| abstract_inverted_index.shadows, | 42 |
| abstract_inverted_index.support. | 28 |
| abstract_inverted_index.two-step | 102 |
| abstract_inverted_index.wildfire | 185 |
| abstract_inverted_index.MobileNet | 128, 166 |
| abstract_inverted_index.Wildfires | 0 |
| abstract_inverted_index.adaptable | 191 |
| abstract_inverted_index.annotated | 77 |
| abstract_inverted_index.augmented | 88 |
| abstract_inverted_index.connected | 112 |
| abstract_inverted_index.detection | 24 |
| abstract_inverted_index.extensive | 133 |
| abstract_inverted_index.practical | 189 |
| abstract_inverted_index.providing | 148 |
| abstract_inverted_index.reconnect | 115 |
| abstract_inverted_index.response, | 186 |
| abstract_inverted_index.responses | 10 |
| abstract_inverted_index.segments. | 118 |
| abstract_inverted_index.Precision, | 158 |
| abstract_inverted_index.automated, | 177 |
| abstract_inverted_index.automation | 51 |
| abstract_inverted_index.challenges | 15 |
| abstract_inverted_index.components | 113 |
| abstract_inverted_index.consistent | 151 |
| abstract_inverted_index.ecosystems | 5 |
| abstract_inverted_index.essential. | 11 |
| abstract_inverted_index.integrates | 61 |
| abstract_inverted_index.introduces | 57 |
| abstract_inverted_index.occlusion. | 97 |
| abstract_inverted_index.occlusions | 38 |
| abstract_inverted_index.robustness | 95 |
| abstract_inverted_index.vegetation | 40 |
| abstract_inverted_index.worldwide, | 6 |
| abstract_inverted_index.U-Net-based | 62 |
| abstract_inverted_index.large-scale | 53 |
| abstract_inverted_index.management. | 195 |
| abstract_inverted_index.operational | 27, 184 |
| abstract_inverted_index.significant | 2 |
| abstract_inverted_index.Firefighters | 12 |
| abstract_inverted_index.adaptability | 44 |
| abstract_inverted_index.augmentation | 142 |
| abstract_inverted_index.firefighting | 9 |
| abstract_inverted_index.highlighting | 19 |
| abstract_inverted_index.improvement. | 172 |
| abstract_inverted_index.performance, | 145 |
| abstract_inverted_index.segmentation | 94, 106 |
| abstract_inverted_index.applications. | 54 |
| abstract_inverted_index.architectures | 65 |
| abstract_inverted_index.augmentation. | 140 |
| abstract_inverted_index.significantly | 143 |
| abstract_inverted_index.advanced-stage | 17 |
| abstract_inverted_index.architectures: | 120 |
| abstract_inverted_index.hyperparameter | 134 |
| abstract_inverted_index.orthorectified | 81 |
| abstract_inverted_index.wildfire-prone | 46, 85 |
| abstract_inverted_index.post-processing | 67, 108, 147, 171 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.6399999856948853 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.38053559 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |