Accurate Weed Mapping and Prescription Map Generation Based on Fully Convolutional Networks Using UAV Imagery Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.3390/s18103299
Chemical control is necessary in order to control weed infestation and to ensure a rice yield. However, excessive use of herbicides has caused serious agronomic and environmental problems. Site specific weed management (SSWM) recommends an appropriate dose of herbicides according to the weed coverage, which may reduce the use of herbicides while enhancing their chemical effects. In the context of SSWM, the weed cover map and prescription map must be generated in order to carry out the accurate spraying. In this paper, high resolution unmanned aerial vehicle (UAV) imagery were captured over a rice field. Different workflows were evaluated to generate the weed cover map for the whole field. Fully convolutional networks (FCN) was applied for a pixel-level classification. Theoretical analysis and practical evaluation were carried out to seek for an architecture improvement and performance boost. A chessboard segmentation process was used to build the grid framework of the prescription map. The experimental results showed that the overall accuracy and mean intersection over union (mean IU) for weed mapping using FCN-4s were 0.9196 and 0.8473, and the total time (including the data collection and data processing) required to generate the weed cover map for the entire field (50 × 60 m) was less than half an hour. Different weed thresholds (0.00–0.25, with an interval of 0.05) were used for the prescription map generation. High accuracies (above 0.94) were observed for all of the threshold values, and the relevant herbicide saving ranged from 58.3% to 70.8%. All of the experimental results demonstrated that the method used in this work has the potential to produce an accurate weed cover map and prescription map in SSWM applications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s18103299
- https://www.mdpi.com/1424-8220/18/10/3299/pdf?version=1538374412
- OA Status
- gold
- Cited By
- 71
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2894587475
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2894587475Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s18103299Digital Object Identifier
- Title
-
Accurate Weed Mapping and Prescription Map Generation Based on Fully Convolutional Networks Using UAV ImageryWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-10-01Full publication date if available
- Authors
-
Huasheng Huang, Jizhong Deng, Yubin Lan, Aqing Yang, Xiaoling Deng, Sheng Wen, Huihui Zhang, Yali ZhangList of authors in order
- Landing page
-
https://doi.org/10.3390/s18103299Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/18/10/3299/pdf?version=1538374412Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/18/10/3299/pdf?version=1538374412Direct OA link when available
- Concepts
-
Context (archaeology), Weed, Computer science, Pixel, Weed control, Artificial intelligence, Agronomy, Geography, Archaeology, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
71Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 14, 2024: 19, 2023: 8, 2022: 4, 2021: 14Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2894587475 |
|---|---|
| doi | https://doi.org/10.3390/s18103299 |
| ids.doi | https://doi.org/10.3390/s18103299 |
| ids.mag | 2894587475 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/30275366 |
| ids.openalex | https://openalex.org/W2894587475 |
| fwci | 5.56427129 |
| type | article |
| title | Accurate Weed Mapping and Prescription Map Generation Based on Fully Convolutional Networks Using UAV Imagery |
| biblio.issue | 10 |
| biblio.volume | 18 |
| biblio.last_page | 3299 |
| biblio.first_page | 3299 |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T11164 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9966999888420105 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Remote Sensing and LiDAR Applications |
| topics[2].id | https://openalex.org/T10111 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9962999820709229 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2303 |
| topics[2].subfield.display_name | Ecology |
| topics[2].display_name | Remote Sensing in Agriculture |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C2779343474 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6746050119400024 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[0].display_name | Context (archaeology) |
| concepts[1].id | https://openalex.org/C2775891814 |
| concepts[1].level | 2 |
| concepts[1].score | 0.656894326210022 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q101879 |
| concepts[1].display_name | Weed |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5243851542472839 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C160633673 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5105448961257935 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[3].display_name | Pixel |
| concepts[4].id | https://openalex.org/C147273371 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48300135135650635 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2739141 |
| concepts[4].display_name | Weed control |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.32632970809936523 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C6557445 |
| concepts[6].level | 1 |
| concepts[6].score | 0.11849924921989441 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[6].display_name | Agronomy |
| concepts[7].id | https://openalex.org/C205649164 |
| concepts[7].level | 0 |
| concepts[7].score | 0.11738941073417664 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[7].display_name | Geography |
| concepts[8].id | https://openalex.org/C166957645 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[8].display_name | Archaeology |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/context |
| keywords[0].score | 0.6746050119400024 |
| keywords[0].display_name | Context (archaeology) |
| keywords[1].id | https://openalex.org/keywords/weed |
| keywords[1].score | 0.656894326210022 |
| keywords[1].display_name | Weed |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5243851542472839 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/pixel |
| keywords[3].score | 0.5105448961257935 |
| keywords[3].display_name | Pixel |
| keywords[4].id | https://openalex.org/keywords/weed-control |
| keywords[4].score | 0.48300135135650635 |
| keywords[4].display_name | Weed control |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.32632970809936523 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/agronomy |
| keywords[6].score | 0.11849924921989441 |
| keywords[6].display_name | Agronomy |
| keywords[7].id | https://openalex.org/keywords/geography |
| keywords[7].score | 0.11738941073417664 |
| keywords[7].display_name | Geography |
| language | en |
| locations[0].id | doi:10.3390/s18103299 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/18/10/3299/pdf?version=1538374412 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s18103299 |
| locations[1].id | pmid:30275366 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/30275366 |
| locations[2].id | pmh:oai:doaj.org/article:9c141ebfa35343a2b03920d04206fa92 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 18, Iss 10, p 3299 (2018) |
| locations[2].landing_page_url | https://doaj.org/article/9c141ebfa35343a2b03920d04206fa92 |
| locations[3].id | pmh:oai:europepmc.org:5161615 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | http://europepmc.org/pmc/articles/PMC6209949 |
| locations[4].id | pmh:oai:mdpi.com:/1424-8220/18/10/3299/ |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400947 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | MDPI (MDPI AG) |
| locations[4].source.host_organization | https://openalex.org/I4210097602 |
| locations[4].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[4].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors |
| locations[4].landing_page_url | http://dx.doi.org/10.3390/s18103299 |
| locations[5].id | pmh:oai:pubmedcentral.nih.gov:6209949 |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S2764455111 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | False |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | PubMed Central |
| locations[5].source.host_organization | https://openalex.org/I1299303238 |
| locations[5].source.host_organization_name | National Institutes of Health |
| locations[5].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[5].license | other-oa |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | Text |
| locations[5].license_id | https://openalex.org/licenses/other-oa |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | Sensors (Basel) |
| locations[5].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/6209949 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5051188156 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6546-6501 |
| authorships[0].author.display_name | Huasheng Huang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I101479585 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Engineering, South China Agricultural University, Wushan Road, Guangzhou 510642, China |
| authorships[0].affiliations[1].raw_affiliation_string | National Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology, Wushan Road, Guangzhou 510624, China |
| authorships[0].institutions[0].id | https://openalex.org/I101479585 |
| authorships[0].institutions[0].ror | https://ror.org/05v9jqt67 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I101479585 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | South China Agricultural University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huasheng Huang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Engineering, South China Agricultural University, Wushan Road, Guangzhou 510642, China, National Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology, Wushan Road, Guangzhou 510624, China |
| authorships[1].author.id | https://openalex.org/A5071756107 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jizhong Deng |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I101479585 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Engineering, South China Agricultural University, Wushan Road, Guangzhou 510642, China |
| authorships[1].affiliations[1].raw_affiliation_string | National Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology, Wushan Road, Guangzhou 510624, China |
| authorships[1].institutions[0].id | https://openalex.org/I101479585 |
| authorships[1].institutions[0].ror | https://ror.org/05v9jqt67 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I101479585 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | South China Agricultural University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jizhong Deng |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | College of Engineering, South China Agricultural University, Wushan Road, Guangzhou 510642, China, National Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology, Wushan Road, Guangzhou 510624, China |
| authorships[2].author.id | https://openalex.org/A5101666108 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6664-5571 |
| authorships[2].author.display_name | Yubin Lan |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].raw_affiliation_string | National Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology, Wushan Road, Guangzhou 510624, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I101479585 |
| authorships[2].affiliations[1].raw_affiliation_string | College of Engineering, South China Agricultural University, Wushan Road, Guangzhou 510642, China |
| authorships[2].institutions[0].id | https://openalex.org/I101479585 |
| authorships[2].institutions[0].ror | https://ror.org/05v9jqt67 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I101479585 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | South China Agricultural University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yubin Lan |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | College of Engineering, South China Agricultural University, Wushan Road, Guangzhou 510642, China, National Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology, Wushan Road, Guangzhou 510624, China |
| authorships[3].author.id | https://openalex.org/A5109405883 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Aqing Yang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I101479585 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Electronic Engineering, South China Agricultural University, Wushan Road, Guangzhou 510624, China |
| authorships[3].institutions[0].id | https://openalex.org/I101479585 |
| authorships[3].institutions[0].ror | https://ror.org/05v9jqt67 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I101479585 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | South China Agricultural University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Aqing Yang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Electronic Engineering, South China Agricultural University, Wushan Road, Guangzhou 510624, China |
| authorships[4].author.id | https://openalex.org/A5053583417 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5588-3443 |
| authorships[4].author.display_name | Xiaoling Deng |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].raw_affiliation_string | National Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology, Wushan Road, Guangzhou 510624, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I101479585 |
| authorships[4].affiliations[1].raw_affiliation_string | College of Electronic Engineering, South China Agricultural University, Wushan Road, Guangzhou 510624, China |
| authorships[4].institutions[0].id | https://openalex.org/I101479585 |
| authorships[4].institutions[0].ror | https://ror.org/05v9jqt67 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I101479585 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | South China Agricultural University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xiaoling Deng |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Electronic Engineering, South China Agricultural University, Wushan Road, Guangzhou 510624, China, National Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology, Wushan Road, Guangzhou 510624, China |
| authorships[5].author.id | https://openalex.org/A5112210207 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Sheng Wen |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I101479585 |
| authorships[5].affiliations[0].raw_affiliation_string | Engineering Fundamental Teaching and Training Center, South China Agricultural University, Wushan Road, Guangzhou 510624, China |
| authorships[5].affiliations[1].raw_affiliation_string | National Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology, Wushan Road, Guangzhou 510624, China |
| authorships[5].institutions[0].id | https://openalex.org/I101479585 |
| authorships[5].institutions[0].ror | https://ror.org/05v9jqt67 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I101479585 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | South China Agricultural University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sheng Wen |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Engineering Fundamental Teaching and Training Center, South China Agricultural University, Wushan Road, Guangzhou 510624, China, National Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology, Wushan Road, Guangzhou 510624, China |
| authorships[6].author.id | https://openalex.org/A5100651514 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9781-6086 |
| authorships[6].author.display_name | Huihui Zhang |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210145274 |
| authorships[6].affiliations[0].raw_affiliation_string | USDA, Agricultural Research Service, Water Management Research Unit, 2150 Centre Ave., Building D, Suite 320, Fort Collins, CO 80526-8119, USA |
| authorships[6].institutions[0].id | https://openalex.org/I4210145274 |
| authorships[6].institutions[0].ror | https://ror.org/03sqy6516 |
| authorships[6].institutions[0].type | government |
| authorships[6].institutions[0].lineage | https://openalex.org/I1312222531, https://openalex.org/I1336096307, https://openalex.org/I4210145274 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Agricultural Research Service - Plains Area |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Huihui Zhang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | USDA, Agricultural Research Service, Water Management Research Unit, 2150 Centre Ave., Building D, Suite 320, Fort Collins, CO 80526-8119, USA |
| authorships[7].author.id | https://openalex.org/A5100638312 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-7795-9277 |
| authorships[7].author.display_name | Yali Zhang |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].raw_affiliation_string | National Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology, Wushan Road, Guangzhou 510624, China |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I101479585 |
| authorships[7].affiliations[1].raw_affiliation_string | College of Engineering, South China Agricultural University, Wushan Road, Guangzhou 510642, China |
| authorships[7].institutions[0].id | https://openalex.org/I101479585 |
| authorships[7].institutions[0].ror | https://ror.org/05v9jqt67 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I101479585 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | South China Agricultural University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Yali Zhang |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | College of Engineering, South China Agricultural University, Wushan Road, Guangzhou 510642, China, National Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology, Wushan Road, Guangzhou 510624, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/18/10/3299/pdf?version=1538374412 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Accurate Weed Mapping and Prescription Map Generation Based on Fully Convolutional Networks Using UAV Imagery |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W2506386864, https://openalex.org/W3049256127, https://openalex.org/W2019082283, https://openalex.org/W2076074519, https://openalex.org/W1592917383, https://openalex.org/W1966322886, https://openalex.org/W2279742145, https://openalex.org/W2486520318, https://openalex.org/W4391009123, https://openalex.org/W2043829150 |
| cited_by_count | 71 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 14 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 19 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 8 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 4 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 14 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 6 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 5 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 1 |
| locations_count | 6 |
| best_oa_location.id | doi:10.3390/s18103299 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/18/10/3299/pdf?version=1538374412 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s18103299 |
| primary_location.id | doi:10.3390/s18103299 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/18/10/3299/pdf?version=1538374412 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s18103299 |
| publication_date | 2018-10-01 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W4230880071, https://openalex.org/W1200922351, https://openalex.org/W1966072494, https://openalex.org/W2411438253, https://openalex.org/W2080091930, https://openalex.org/W2056172814, https://openalex.org/W2790858865, https://openalex.org/W6738559714, https://openalex.org/W2509244836, https://openalex.org/W1545641654, https://openalex.org/W2136783177, https://openalex.org/W2166516660, https://openalex.org/W2081286693, https://openalex.org/W2919115771, https://openalex.org/W6711868289, https://openalex.org/W2412782625, https://openalex.org/W2771404974, https://openalex.org/W2548390752, https://openalex.org/W2800002789, https://openalex.org/W2811217578, https://openalex.org/W2549124570, https://openalex.org/W1981527205, https://openalex.org/W2780835727, https://openalex.org/W2070188654, https://openalex.org/W2194775991, https://openalex.org/W2534949152, https://openalex.org/W2103476002, https://openalex.org/W2620727978, https://openalex.org/W2395611524, https://openalex.org/W1903029394, https://openalex.org/W2952632681 |
| referenced_works_count | 31 |
| abstract_inverted_index.A | 136 |
| abstract_inverted_index.a | 13, 92, 116 |
| abstract_inverted_index.60 | 199 |
| abstract_inverted_index.In | 56, 79 |
| abstract_inverted_index.an | 34, 130, 205, 212, 263 |
| abstract_inverted_index.be | 69 |
| abstract_inverted_index.in | 4, 71, 255, 271 |
| abstract_inverted_index.is | 2 |
| abstract_inverted_index.m) | 200 |
| abstract_inverted_index.of | 19, 37, 49, 59, 147, 214, 231, 246 |
| abstract_inverted_index.to | 6, 11, 40, 73, 99, 127, 142, 187, 243, 261 |
| abstract_inverted_index.× | 198 |
| abstract_inverted_index.(50 | 197 |
| abstract_inverted_index.All | 245 |
| abstract_inverted_index.IU) | 165 |
| abstract_inverted_index.The | 151 |
| abstract_inverted_index.all | 230 |
| abstract_inverted_index.and | 10, 25, 65, 121, 133, 159, 173, 175, 183, 235, 268 |
| abstract_inverted_index.for | 105, 115, 129, 166, 193, 218, 229 |
| abstract_inverted_index.has | 21, 258 |
| abstract_inverted_index.map | 64, 67, 104, 192, 221, 267, 270 |
| abstract_inverted_index.may | 45 |
| abstract_inverted_index.out | 75, 126 |
| abstract_inverted_index.the | 41, 47, 57, 61, 76, 101, 106, 144, 148, 156, 176, 180, 189, 194, 219, 232, 236, 247, 252, 259 |
| abstract_inverted_index.use | 18, 48 |
| abstract_inverted_index.was | 113, 140, 201 |
| abstract_inverted_index.High | 223 |
| abstract_inverted_index.SSWM | 272 |
| abstract_inverted_index.Site | 28 |
| abstract_inverted_index.data | 181, 184 |
| abstract_inverted_index.dose | 36 |
| abstract_inverted_index.from | 241 |
| abstract_inverted_index.grid | 145 |
| abstract_inverted_index.half | 204 |
| abstract_inverted_index.high | 82 |
| abstract_inverted_index.less | 202 |
| abstract_inverted_index.map. | 150 |
| abstract_inverted_index.mean | 160 |
| abstract_inverted_index.must | 68 |
| abstract_inverted_index.over | 91, 162 |
| abstract_inverted_index.rice | 14, 93 |
| abstract_inverted_index.seek | 128 |
| abstract_inverted_index.than | 203 |
| abstract_inverted_index.that | 155, 251 |
| abstract_inverted_index.this | 80, 256 |
| abstract_inverted_index.time | 178 |
| abstract_inverted_index.used | 141, 217, 254 |
| abstract_inverted_index.weed | 8, 30, 42, 62, 102, 167, 190, 208, 265 |
| abstract_inverted_index.were | 89, 97, 124, 171, 216, 227 |
| abstract_inverted_index.with | 211 |
| abstract_inverted_index.work | 257 |
| abstract_inverted_index.(FCN) | 112 |
| abstract_inverted_index.(UAV) | 87 |
| abstract_inverted_index.(mean | 164 |
| abstract_inverted_index.0.05) | 215 |
| abstract_inverted_index.0.94) | 226 |
| abstract_inverted_index.58.3% | 242 |
| abstract_inverted_index.Fully | 109 |
| abstract_inverted_index.SSWM, | 60 |
| abstract_inverted_index.build | 143 |
| abstract_inverted_index.carry | 74 |
| abstract_inverted_index.cover | 63, 103, 191, 266 |
| abstract_inverted_index.field | 196 |
| abstract_inverted_index.hour. | 206 |
| abstract_inverted_index.order | 5, 72 |
| abstract_inverted_index.their | 53 |
| abstract_inverted_index.total | 177 |
| abstract_inverted_index.union | 163 |
| abstract_inverted_index.using | 169 |
| abstract_inverted_index.which | 44 |
| abstract_inverted_index.while | 51 |
| abstract_inverted_index.whole | 107 |
| abstract_inverted_index.(SSWM) | 32 |
| abstract_inverted_index.(above | 225 |
| abstract_inverted_index.0.9196 | 172 |
| abstract_inverted_index.70.8%. | 244 |
| abstract_inverted_index.FCN-4s | 170 |
| abstract_inverted_index.aerial | 85 |
| abstract_inverted_index.boost. | 135 |
| abstract_inverted_index.caused | 22 |
| abstract_inverted_index.ensure | 12 |
| abstract_inverted_index.entire | 195 |
| abstract_inverted_index.field. | 94, 108 |
| abstract_inverted_index.method | 253 |
| abstract_inverted_index.paper, | 81 |
| abstract_inverted_index.ranged | 240 |
| abstract_inverted_index.reduce | 46 |
| abstract_inverted_index.saving | 239 |
| abstract_inverted_index.showed | 154 |
| abstract_inverted_index.yield. | 15 |
| abstract_inverted_index.0.8473, | 174 |
| abstract_inverted_index.applied | 114 |
| abstract_inverted_index.carried | 125 |
| abstract_inverted_index.context | 58 |
| abstract_inverted_index.control | 1, 7 |
| abstract_inverted_index.imagery | 88 |
| abstract_inverted_index.mapping | 168 |
| abstract_inverted_index.overall | 157 |
| abstract_inverted_index.process | 139 |
| abstract_inverted_index.produce | 262 |
| abstract_inverted_index.results | 153, 249 |
| abstract_inverted_index.serious | 23 |
| abstract_inverted_index.values, | 234 |
| abstract_inverted_index.vehicle | 86 |
| abstract_inverted_index.Chemical | 0 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.accuracy | 158 |
| abstract_inverted_index.accurate | 77, 264 |
| abstract_inverted_index.analysis | 120 |
| abstract_inverted_index.captured | 90 |
| abstract_inverted_index.chemical | 54 |
| abstract_inverted_index.effects. | 55 |
| abstract_inverted_index.generate | 100, 188 |
| abstract_inverted_index.interval | 213 |
| abstract_inverted_index.networks | 111 |
| abstract_inverted_index.observed | 228 |
| abstract_inverted_index.relevant | 237 |
| abstract_inverted_index.required | 186 |
| abstract_inverted_index.specific | 29 |
| abstract_inverted_index.unmanned | 84 |
| abstract_inverted_index.Different | 95, 207 |
| abstract_inverted_index.according | 39 |
| abstract_inverted_index.agronomic | 24 |
| abstract_inverted_index.coverage, | 43 |
| abstract_inverted_index.enhancing | 52 |
| abstract_inverted_index.evaluated | 98 |
| abstract_inverted_index.excessive | 17 |
| abstract_inverted_index.framework | 146 |
| abstract_inverted_index.generated | 70 |
| abstract_inverted_index.herbicide | 238 |
| abstract_inverted_index.necessary | 3 |
| abstract_inverted_index.potential | 260 |
| abstract_inverted_index.practical | 122 |
| abstract_inverted_index.problems. | 27 |
| abstract_inverted_index.spraying. | 78 |
| abstract_inverted_index.threshold | 233 |
| abstract_inverted_index.workflows | 96 |
| abstract_inverted_index.(including | 179 |
| abstract_inverted_index.accuracies | 224 |
| abstract_inverted_index.chessboard | 137 |
| abstract_inverted_index.collection | 182 |
| abstract_inverted_index.evaluation | 123 |
| abstract_inverted_index.herbicides | 20, 38, 50 |
| abstract_inverted_index.management | 31 |
| abstract_inverted_index.recommends | 33 |
| abstract_inverted_index.resolution | 83 |
| abstract_inverted_index.thresholds | 209 |
| abstract_inverted_index.Theoretical | 119 |
| abstract_inverted_index.appropriate | 35 |
| abstract_inverted_index.generation. | 222 |
| abstract_inverted_index.improvement | 132 |
| abstract_inverted_index.infestation | 9 |
| abstract_inverted_index.performance | 134 |
| abstract_inverted_index.pixel-level | 117 |
| abstract_inverted_index.processing) | 185 |
| abstract_inverted_index.architecture | 131 |
| abstract_inverted_index.demonstrated | 250 |
| abstract_inverted_index.experimental | 152, 248 |
| abstract_inverted_index.intersection | 161 |
| abstract_inverted_index.prescription | 66, 149, 220, 269 |
| abstract_inverted_index.segmentation | 138 |
| abstract_inverted_index.(0.00–0.25, | 210 |
| abstract_inverted_index.applications. | 273 |
| abstract_inverted_index.convolutional | 110 |
| abstract_inverted_index.environmental | 26 |
| abstract_inverted_index.classification. | 118 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5071756107, https://openalex.org/A5101666108 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I101479585 |
| citation_normalized_percentile.value | 0.9723752 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |