ACCYolo: Transmission equipment inspection image detection method based on multi-scale and occluded targets Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pone.0335186
With the rising global demand for electricity, transmission infrastructure is becoming increasingly important as a key support for ensuring stable and reliable power supply.In recent years, UAVs have been widely used in the inspection and maintenance of transmission equipment due to their advantages of high efficiency, flexibility and intelligence, which have greatly improved the operation and maintenance efficiency and safety level.However, the transmission equipment itself is exposed to harsh natural environments during prolonged use, such as high temperatures, humidity changes, wind and sand erosion, as well as electromagnetic interference, coupled with complex topographical features, such as mountainous, hilly, and forested areas, which result in the transmission equipment inspection process being challenged by occlusion and large differences in dimensions.To cope with these problems, this paper proposes ACCYolo. a model based on the YOLOv10n architecture with the goal of improving image detection of transmission equipment under multi-scale and occluded targets in UAV-based scenes.On the one hand, the ACCYolo model, to solve the occlusion problem, incorporates the Acmix model, which incorporates the self-attention mechanism to achieve dynamic feature extraction, effectively improving the detection performance of the model in overlapping scenes.On the other hand, in order to cope with the size difference problem in multi-scale detection, the GELAN structure combines a lightweight design with the Programmable Gradient Information (PGI) mechanism to improve the accuracy of multi-scale target detection, while the ASFF module is designed to improve the accuracy of multi-scale target detection through adaptive spatial feature fusion.The experimental results show that. The proposed method shows significant advantages in transmission equipment monitoring tasks, Overall mAP@50 raise to 0.950, and provides an effective program to ensure the reliability of power supply.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1371/journal.pone.0335186
- OA Status
- gold
- References
- 33
- OpenAlex ID
- https://openalex.org/W4415626518
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415626518Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pone.0335186Digital Object Identifier
- Title
-
ACCYolo: Transmission equipment inspection image detection method based on multi-scale and occluded targetsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-28Full publication date if available
- Authors
-
Xi Chen, Feng Yao, Rutao Cui, Shulei Zhang, Haixing Li, Chunhe Song, Shimao YuList of authors in order
- Landing page
-
https://doi.org/10.1371/journal.pone.0335186Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1371/journal.pone.0335186Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
33Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415626518 |
|---|---|
| doi | https://doi.org/10.1371/journal.pone.0335186 |
| ids.doi | https://doi.org/10.1371/journal.pone.0335186 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41150705 |
| ids.openalex | https://openalex.org/W4415626518 |
| fwci | |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000088722 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Unmanned Aerial Devices |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000465 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Algorithms |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D008962 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Models, Theoretical |
| mesh[3].qualifier_ui | Q000379 |
| mesh[3].descriptor_ui | D007091 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | methods |
| mesh[3].descriptor_name | Image Processing, Computer-Assisted |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000088722 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Unmanned Aerial Devices |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000465 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Algorithms |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D008962 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Models, Theoretical |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D007091 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Image Processing, Computer-Assisted |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000088722 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Unmanned Aerial Devices |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000465 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Algorithms |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D008962 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Models, Theoretical |
| mesh[11].qualifier_ui | Q000379 |
| mesh[11].descriptor_ui | D007091 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | methods |
| mesh[11].descriptor_name | Image Processing, Computer-Assisted |
| type | article |
| title | ACCYolo: Transmission equipment inspection image detection method based on multi-scale and occluded targets |
| biblio.issue | 10 |
| biblio.volume | 20 |
| biblio.last_page | e0335186 |
| biblio.first_page | e0335186 |
| is_xpac | False |
| apc_list.value | 1805 |
| apc_list.currency | USD |
| apc_list.value_usd | 1805 |
| apc_paid.value | 1805 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1805 |
| language | en |
| locations[0].id | doi:10.1371/journal.pone.0335186 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S202381698 |
| locations[0].source.issn | 1932-6203 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1932-6203 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PLoS ONE |
| locations[0].source.host_organization | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_name | Public Library of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_lineage_names | Public Library of Science |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PLOS One |
| locations[0].landing_page_url | https://doi.org/10.1371/journal.pone.0335186 |
| locations[1].id | pmid:41150705 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PloS one |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41150705 |
| locations[2].id | pmh:oai:doaj.org/article:6694a9e7101447f4871b4d1509b81af2 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | PLoS ONE, Vol 20, Iss 10, p e0335186 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/6694a9e7101447f4871b4d1509b81af2 |
| locations[3].id | pmh:oai:europepmc.org:11370882 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12561923 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5015223461 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2605-5387 |
| authorships[0].author.display_name | Xi Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I157507598 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Software, Shenyang University of Technology, Shenyang, China |
| authorships[0].institutions[0].id | https://openalex.org/I157507598 |
| authorships[0].institutions[0].ror | https://ror.org/00d7f8730 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I157507598 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shenyang University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xi Chen |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Software, Shenyang University of Technology, Shenyang, China |
| authorships[1].author.id | https://openalex.org/A5044930283 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4179-6407 |
| authorships[1].author.display_name | Feng Yao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I157507598 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Software, Shenyang University of Technology, Shenyang, China |
| authorships[1].institutions[0].id | https://openalex.org/I157507598 |
| authorships[1].institutions[0].ror | https://ror.org/00d7f8730 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I157507598 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shenyang University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fulong Yao |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Software, Shenyang University of Technology, Shenyang, China |
| authorships[2].author.id | https://openalex.org/A5082440467 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4377-9988 |
| authorships[2].author.display_name | Rutao Cui |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I157507598 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Software, Shenyang University of Technology, Shenyang, China |
| authorships[2].institutions[0].id | https://openalex.org/I157507598 |
| authorships[2].institutions[0].ror | https://ror.org/00d7f8730 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I157507598 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shenyang University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rongbin Cui |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | School of Software, Shenyang University of Technology, Shenyang, China |
| authorships[3].author.id | https://openalex.org/A5106859059 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Shulei Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Control Engineering, Northeastern University, Shenyang, China |
| authorships[3].institutions[0].id | https://openalex.org/I9224756 |
| authorships[3].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Northeastern University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shulei Zhang |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | School of Control Engineering, Northeastern University, Shenyang, China |
| authorships[4].author.id | https://openalex.org/A5055411789 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3678-0331 |
| authorships[4].author.display_name | Haixing Li |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I157507598 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Artificial Intelligence, Shenyang University of Technology, Shenyang, China |
| authorships[4].institutions[0].id | https://openalex.org/I157507598 |
| authorships[4].institutions[0].ror | https://ror.org/00d7f8730 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I157507598 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Shenyang University of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Haixing Li |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | School of Artificial Intelligence, Shenyang University of Technology, Shenyang, China |
| authorships[5].author.id | https://openalex.org/A5043075442 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8392-1777 |
| authorships[5].author.display_name | Chunhe Song |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].raw_affiliation_string | The Institute of Al for Industries, Nanjing, China |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I142078773, https://openalex.org/I19820366 |
| authorships[5].affiliations[1].raw_affiliation_string | Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China |
| authorships[5].institutions[0].id | https://openalex.org/I19820366 |
| authorships[5].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[5].institutions[1].id | https://openalex.org/I142078773 |
| authorships[5].institutions[1].ror | https://ror.org/00ft6nj33 |
| authorships[5].institutions[1].type | facility |
| authorships[5].institutions[1].lineage | https://openalex.org/I142078773, https://openalex.org/I19820366 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Shenyang Institute of Automation |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chunhe Song |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China, The Institute of Al for Industries, Nanjing, China |
| authorships[6].author.id | https://openalex.org/A5042794515 |
| authorships[6].author.orcid | https://orcid.org/0009-0008-5988-429X |
| authorships[6].author.display_name | Shimao Yu |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I142078773, https://openalex.org/I19820366 |
| authorships[6].affiliations[0].raw_affiliation_string | Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China |
| authorships[6].institutions[0].id | https://openalex.org/I19820366 |
| authorships[6].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[6].institutions[0].type | government |
| authorships[6].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[6].institutions[1].id | https://openalex.org/I142078773 |
| authorships[6].institutions[1].ror | https://ror.org/00ft6nj33 |
| authorships[6].institutions[1].type | facility |
| authorships[6].institutions[1].lineage | https://openalex.org/I142078773, https://openalex.org/I19820366 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Shenyang Institute of Automation |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Shimao Yu |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1371/journal.pone.0335186 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-29T00:00:00 |
| display_name | ACCYolo: Transmission equipment inspection image detection method based on multi-scale and occluded targets |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1371/journal.pone.0335186 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S202381698 |
| best_oa_location.source.issn | 1932-6203 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1932-6203 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PLoS ONE |
| best_oa_location.source.host_organization | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_name | Public Library of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_lineage_names | Public Library of Science |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PLOS One |
| best_oa_location.landing_page_url | https://doi.org/10.1371/journal.pone.0335186 |
| primary_location.id | doi:10.1371/journal.pone.0335186 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S202381698 |
| primary_location.source.issn | 1932-6203 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1932-6203 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PLoS ONE |
| primary_location.source.host_organization | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_name | Public Library of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_lineage_names | Public Library of Science |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PLOS One |
| primary_location.landing_page_url | https://doi.org/10.1371/journal.pone.0335186 |
| publication_date | 2025-10-28 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4214836686, https://openalex.org/W3037506063, https://openalex.org/W2969583644, https://openalex.org/W3153418506, https://openalex.org/W2044252996, https://openalex.org/W2807868713, https://openalex.org/W4405780401, https://openalex.org/W4229013406, https://openalex.org/W2243417253, https://openalex.org/W2020620047, https://openalex.org/W2765954046, https://openalex.org/W2564429410, https://openalex.org/W2193145675, https://openalex.org/W2963037989, https://openalex.org/W2102605133, https://openalex.org/W1536680647, https://openalex.org/W4387540041, https://openalex.org/W4284881000, https://openalex.org/W4311185806, https://openalex.org/W3106754126, https://openalex.org/W4353065268, https://openalex.org/W2885605338, https://openalex.org/W4385839827, https://openalex.org/W4389347185, https://openalex.org/W2979826702, https://openalex.org/W4413810557, https://openalex.org/W4226224676, https://openalex.org/W4403770406, https://openalex.org/W4409244834, https://openalex.org/W4401856303, https://openalex.org/W4400144847, https://openalex.org/W4396652473, https://openalex.org/W3012303644 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 14, 126, 206 |
| abstract_inverted_index.an | 265 |
| abstract_inverted_index.as | 13, 75, 84, 86, 95 |
| abstract_inverted_index.by | 111 |
| abstract_inverted_index.in | 31, 103, 116, 148, 184, 190, 199, 253 |
| abstract_inverted_index.is | 9, 65, 228 |
| abstract_inverted_index.of | 36, 43, 136, 140, 181, 220, 234, 272 |
| abstract_inverted_index.on | 129 |
| abstract_inverted_index.to | 40, 67, 157, 171, 192, 216, 230, 261, 268 |
| abstract_inverted_index.The | 247 |
| abstract_inverted_index.and | 20, 34, 47, 55, 58, 81, 98, 113, 145, 263 |
| abstract_inverted_index.due | 39 |
| abstract_inverted_index.for | 5, 17 |
| abstract_inverted_index.key | 15 |
| abstract_inverted_index.one | 152 |
| abstract_inverted_index.the | 1, 32, 53, 61, 104, 130, 134, 151, 154, 159, 163, 168, 178, 182, 187, 195, 202, 210, 218, 225, 232, 270 |
| abstract_inverted_index.ASFF | 226 |
| abstract_inverted_index.UAVs | 26 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.been | 28 |
| abstract_inverted_index.cope | 118, 193 |
| abstract_inverted_index.goal | 135 |
| abstract_inverted_index.have | 27, 50 |
| abstract_inverted_index.high | 44, 76 |
| abstract_inverted_index.sand | 82 |
| abstract_inverted_index.show | 245 |
| abstract_inverted_index.size | 196 |
| abstract_inverted_index.such | 74, 94 |
| abstract_inverted_index.this | 122 |
| abstract_inverted_index.use, | 73 |
| abstract_inverted_index.used | 30 |
| abstract_inverted_index.well | 85 |
| abstract_inverted_index.wind | 80 |
| abstract_inverted_index.with | 90, 119, 133, 194, 209 |
| abstract_inverted_index.(PGI) | 214 |
| abstract_inverted_index.Acmix | 164 |
| abstract_inverted_index.GELAN | 203 |
| abstract_inverted_index.based | 128 |
| abstract_inverted_index.being | 109 |
| abstract_inverted_index.hand, | 153, 189 |
| abstract_inverted_index.harsh | 68 |
| abstract_inverted_index.image | 138 |
| abstract_inverted_index.large | 114 |
| abstract_inverted_index.model | 127, 183 |
| abstract_inverted_index.order | 191 |
| abstract_inverted_index.other | 188 |
| abstract_inverted_index.paper | 123 |
| abstract_inverted_index.power | 22, 273 |
| abstract_inverted_index.raise | 260 |
| abstract_inverted_index.shows | 250 |
| abstract_inverted_index.solve | 158 |
| abstract_inverted_index.that. | 246 |
| abstract_inverted_index.their | 41 |
| abstract_inverted_index.these | 120 |
| abstract_inverted_index.under | 143 |
| abstract_inverted_index.which | 49, 101, 166 |
| abstract_inverted_index.while | 224 |
| abstract_inverted_index.0.950, | 262 |
| abstract_inverted_index.areas, | 100 |
| abstract_inverted_index.demand | 4 |
| abstract_inverted_index.design | 208 |
| abstract_inverted_index.during | 71 |
| abstract_inverted_index.ensure | 269 |
| abstract_inverted_index.global | 3 |
| abstract_inverted_index.hilly, | 97 |
| abstract_inverted_index.itself | 64 |
| abstract_inverted_index.mAP@50 | 259 |
| abstract_inverted_index.method | 249 |
| abstract_inverted_index.model, | 156, 165 |
| abstract_inverted_index.module | 227 |
| abstract_inverted_index.recent | 24 |
| abstract_inverted_index.result | 102 |
| abstract_inverted_index.rising | 2 |
| abstract_inverted_index.safety | 59 |
| abstract_inverted_index.stable | 19 |
| abstract_inverted_index.target | 222, 236 |
| abstract_inverted_index.tasks, | 257 |
| abstract_inverted_index.widely | 29 |
| abstract_inverted_index.years, | 25 |
| abstract_inverted_index.ACCYolo | 155 |
| abstract_inverted_index.Overall | 258 |
| abstract_inverted_index.achieve | 172 |
| abstract_inverted_index.complex | 91 |
| abstract_inverted_index.coupled | 89 |
| abstract_inverted_index.dynamic | 173 |
| abstract_inverted_index.exposed | 66 |
| abstract_inverted_index.feature | 174, 241 |
| abstract_inverted_index.greatly | 51 |
| abstract_inverted_index.improve | 217, 231 |
| abstract_inverted_index.natural | 69 |
| abstract_inverted_index.problem | 198 |
| abstract_inverted_index.process | 108 |
| abstract_inverted_index.program | 267 |
| abstract_inverted_index.results | 244 |
| abstract_inverted_index.spatial | 240 |
| abstract_inverted_index.supply. | 274 |
| abstract_inverted_index.support | 16 |
| abstract_inverted_index.targets | 147 |
| abstract_inverted_index.through | 238 |
| abstract_inverted_index.ACCYolo. | 125 |
| abstract_inverted_index.Gradient | 212 |
| abstract_inverted_index.YOLOv10n | 131 |
| abstract_inverted_index.accuracy | 219, 233 |
| abstract_inverted_index.adaptive | 239 |
| abstract_inverted_index.becoming | 10 |
| abstract_inverted_index.changes, | 79 |
| abstract_inverted_index.combines | 205 |
| abstract_inverted_index.designed | 229 |
| abstract_inverted_index.ensuring | 18 |
| abstract_inverted_index.erosion, | 83 |
| abstract_inverted_index.forested | 99 |
| abstract_inverted_index.humidity | 78 |
| abstract_inverted_index.improved | 52 |
| abstract_inverted_index.occluded | 146 |
| abstract_inverted_index.problem, | 161 |
| abstract_inverted_index.proposed | 248 |
| abstract_inverted_index.proposes | 124 |
| abstract_inverted_index.provides | 264 |
| abstract_inverted_index.reliable | 21 |
| abstract_inverted_index.UAV-based | 149 |
| abstract_inverted_index.detection | 139, 179, 237 |
| abstract_inverted_index.effective | 266 |
| abstract_inverted_index.equipment | 38, 63, 106, 142, 255 |
| abstract_inverted_index.features, | 93 |
| abstract_inverted_index.important | 12 |
| abstract_inverted_index.improving | 137, 177 |
| abstract_inverted_index.mechanism | 170, 215 |
| abstract_inverted_index.occlusion | 112, 160 |
| abstract_inverted_index.operation | 54 |
| abstract_inverted_index.problems, | 121 |
| abstract_inverted_index.prolonged | 72 |
| abstract_inverted_index.scenes.On | 150, 186 |
| abstract_inverted_index.structure | 204 |
| abstract_inverted_index.supply.In | 23 |
| abstract_inverted_index.advantages | 42, 252 |
| abstract_inverted_index.challenged | 110 |
| abstract_inverted_index.detection, | 201, 223 |
| abstract_inverted_index.difference | 197 |
| abstract_inverted_index.efficiency | 57 |
| abstract_inverted_index.fusion.The | 242 |
| abstract_inverted_index.inspection | 33, 107 |
| abstract_inverted_index.monitoring | 256 |
| abstract_inverted_index.Information | 213 |
| abstract_inverted_index.differences | 115 |
| abstract_inverted_index.effectively | 176 |
| abstract_inverted_index.efficiency, | 45 |
| abstract_inverted_index.extraction, | 175 |
| abstract_inverted_index.flexibility | 46 |
| abstract_inverted_index.lightweight | 207 |
| abstract_inverted_index.maintenance | 35, 56 |
| abstract_inverted_index.multi-scale | 144, 200, 221, 235 |
| abstract_inverted_index.overlapping | 185 |
| abstract_inverted_index.performance | 180 |
| abstract_inverted_index.reliability | 271 |
| abstract_inverted_index.significant | 251 |
| abstract_inverted_index.Programmable | 211 |
| abstract_inverted_index.architecture | 132 |
| abstract_inverted_index.electricity, | 6 |
| abstract_inverted_index.environments | 70 |
| abstract_inverted_index.experimental | 243 |
| abstract_inverted_index.incorporates | 162, 167 |
| abstract_inverted_index.increasingly | 11 |
| abstract_inverted_index.mountainous, | 96 |
| abstract_inverted_index.transmission | 7, 37, 62, 105, 141, 254 |
| abstract_inverted_index.dimensions.To | 117 |
| abstract_inverted_index.intelligence, | 48 |
| abstract_inverted_index.interference, | 88 |
| abstract_inverted_index.temperatures, | 77 |
| abstract_inverted_index.topographical | 92 |
| abstract_inverted_index.infrastructure | 8 |
| abstract_inverted_index.level.However, | 60 |
| abstract_inverted_index.self-attention | 169 |
| abstract_inverted_index.electromagnetic | 87 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5044930283, https://openalex.org/A5082440467, https://openalex.org/A5042794515, https://openalex.org/A5106859059, https://openalex.org/A5055411789, https://openalex.org/A5043075442, https://openalex.org/A5015223461 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I142078773, https://openalex.org/I157507598, https://openalex.org/I19820366, https://openalex.org/I9224756 |
| citation_normalized_percentile |