ACPP-Net: Enhancing Strip Steel Surface Defect Detection With Efficient Adaptive Convolution and Channel-Spatial Pyramid Pooling Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/access.2024.3481031
As an indispensable material in modern industry, steel requires real-time surface defect detection to ensure high-quality manufacturing. However, steel surface defects present significant challenges due to their tiny size, diverse morphology, and uneven feature distribution. To address these challenges and satisfy the balance between accuracy and detection speed, an efficient steel strip surface defect detection network, ACPP-Net, is proposed in this study. Firstly, Adaptive Ghost Convolution, the LM-block, is introduced to meet the need for rapid steel defect detection. By integrating Adaptive Ghost Convolution, this module increases efficiency by reducing redundant information acquisition and adaptively assigning weights to defect features. Secondly, a novel feature enhancement module, FEM-block, is proposed to address the complexity of steel defects and distinguish their subtle differences. This module excels at capturing complex defect textures, aiding in the accurate differentiation of various defects. Additionally, a channel spatial pyramid pooling (CSPP) module is incorporated into the final part of the backbone network. This module effectively helps the network understand the characteristics and distribution of steel defects. Extensive experiments on the NEU-DET and GC10-DET datasets demonstrate ACPP-Net’s superior performance, achieving 82.1% and 71.1% mAP respectively, while maintaining real-time detection capabilities. The detection performance of this model is superior to other methods. These results demonstrate the model’s high accuracy and real-time detection capabilities, thus contributing to efficient and high-quality steel detection processes.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2024.3481031
- OA Status
- gold
- Cited By
- 2
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403420960
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403420960Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2024.3481031Digital Object Identifier
- Title
-
ACPP-Net: Enhancing Strip Steel Surface Defect Detection With Efficient Adaptive Convolution and Channel-Spatial Pyramid PoolingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Rongyi Li, Kailin Hou, Meiwen Zhu, Qinrui Dai, Jun Ni, Xianli Liu, Xinyu LiList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2024.3481031Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2024.3481031Direct OA link when available
- Concepts
-
Pooling, Pyramid (geometry), Convolution (computer science), Computer science, Channel (broadcasting), Net (polyhedron), Artificial intelligence, Pattern recognition (psychology), Algorithm, Mathematics, Geometry, Telecommunications, Artificial neural networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403420960 |
|---|---|
| doi | https://doi.org/10.1109/access.2024.3481031 |
| ids.doi | https://doi.org/10.1109/access.2024.3481031 |
| ids.openalex | https://openalex.org/W4403420960 |
| fwci | 1.36208366 |
| type | article |
| title | ACPP-Net: Enhancing Strip Steel Surface Defect Detection With Efficient Adaptive Convolution and Channel-Spatial Pyramid Pooling |
| awards[0].id | https://openalex.org/G8016363179 |
| awards[0].funder_id | https://openalex.org/F4320336602 |
| awards[0].display_name | |
| awards[0].funder_award_id | CG23012 |
| awards[0].funder_display_name | Major Science and Technology Projects in Yunnan Province |
| awards[1].id | https://openalex.org/G6732715743 |
| awards[1].funder_id | https://openalex.org/F4320323085 |
| awards[1].display_name | |
| awards[1].funder_award_id | TD2022E003 |
| awards[1].funder_display_name | Natural Science Foundation of Heilongjiang Province |
| awards[2].id | https://openalex.org/G1041198701 |
| awards[2].funder_id | https://openalex.org/F4320330561 |
| awards[2].display_name | |
| awards[2].funder_award_id | KFKT202202 |
| awards[2].funder_display_name | Key Laboratory of Modern Manufacturing Technology of the Ministry of Education |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | 152086 |
| biblio.first_page | 152072 |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| topics[1].id | https://openalex.org/T14117 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9948999881744385 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Integrated Circuits and Semiconductor Failure Analysis |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9883000254631042 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| funders[0].id | https://openalex.org/F4320323085 |
| funders[0].ror | |
| funders[0].display_name | Natural Science Foundation of Heilongjiang Province |
| funders[1].id | https://openalex.org/F4320330561 |
| funders[1].ror | |
| funders[1].display_name | Key Laboratory of Modern Manufacturing Technology of the Ministry of Education |
| funders[2].id | https://openalex.org/F4320336602 |
| funders[2].ror | |
| funders[2].display_name | Major Science and Technology Projects in Yunnan Province |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C70437156 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7863667607307434 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7228652 |
| concepts[0].display_name | Pooling |
| concepts[1].id | https://openalex.org/C142575187 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7789870500564575 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3358290 |
| concepts[1].display_name | Pyramid (geometry) |
| concepts[2].id | https://openalex.org/C45347329 |
| concepts[2].level | 3 |
| concepts[2].score | 0.698661208152771 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[2].display_name | Convolution (computer science) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6282960176467896 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C127162648 |
| concepts[4].level | 2 |
| concepts[4].score | 0.56365966796875 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[4].display_name | Channel (broadcasting) |
| concepts[5].id | https://openalex.org/C14166107 |
| concepts[5].level | 2 |
| concepts[5].score | 0.41844624280929565 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q253829 |
| concepts[5].display_name | Net (polyhedron) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.39354297518730164 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.34789055585861206 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.32357460260391235 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.14489781856536865 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C2524010 |
| concepts[10].level | 1 |
| concepts[10].score | 0.13442543148994446 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[10].display_name | Geometry |
| concepts[11].id | https://openalex.org/C76155785 |
| concepts[11].level | 1 |
| concepts[11].score | 0.129502534866333 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[11].display_name | Telecommunications |
| concepts[12].id | https://openalex.org/C50644808 |
| concepts[12].level | 2 |
| concepts[12].score | 0.10005521774291992 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[12].display_name | Artificial neural network |
| keywords[0].id | https://openalex.org/keywords/pooling |
| keywords[0].score | 0.7863667607307434 |
| keywords[0].display_name | Pooling |
| keywords[1].id | https://openalex.org/keywords/pyramid |
| keywords[1].score | 0.7789870500564575 |
| keywords[1].display_name | Pyramid (geometry) |
| keywords[2].id | https://openalex.org/keywords/convolution |
| keywords[2].score | 0.698661208152771 |
| keywords[2].display_name | Convolution (computer science) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6282960176467896 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/channel |
| keywords[4].score | 0.56365966796875 |
| keywords[4].display_name | Channel (broadcasting) |
| keywords[5].id | https://openalex.org/keywords/net |
| keywords[5].score | 0.41844624280929565 |
| keywords[5].display_name | Net (polyhedron) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.39354297518730164 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.34789055585861206 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.32357460260391235 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.14489781856536865 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/geometry |
| keywords[10].score | 0.13442543148994446 |
| keywords[10].display_name | Geometry |
| keywords[11].id | https://openalex.org/keywords/telecommunications |
| keywords[11].score | 0.129502534866333 |
| keywords[11].display_name | Telecommunications |
| keywords[12].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[12].score | 0.10005521774291992 |
| keywords[12].display_name | Artificial neural network |
| language | en |
| locations[0].id | doi:10.1109/access.2024.3481031 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2024.3481031 |
| locations[1].id | pmh:oai:doaj.org/article:7167f2635a514a2f8d58e86e9a0a855b |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 12, Pp 152072-152086 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/7167f2635a514a2f8d58e86e9a0a855b |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5045930085 |
| authorships[0].author.orcid | https://orcid.org/0009-0004-1113-9777 |
| authorships[0].author.display_name | Rongyi Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I100188998 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, China |
| authorships[0].institutions[0].id | https://openalex.org/I100188998 |
| authorships[0].institutions[0].ror | https://ror.org/04e6y1282 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I100188998 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Harbin University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rongyi Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, China |
| authorships[1].author.id | https://openalex.org/A5110994891 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Kailin Hou |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I100188998 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, China |
| authorships[1].institutions[0].id | https://openalex.org/I100188998 |
| authorships[1].institutions[0].ror | https://ror.org/04e6y1282 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I100188998 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Harbin University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kailin Hou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, China |
| authorships[2].author.id | https://openalex.org/A5075233945 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Meiwen Zhu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I100188998 |
| authorships[2].affiliations[0].raw_affiliation_string | Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, China |
| authorships[2].institutions[0].id | https://openalex.org/I100188998 |
| authorships[2].institutions[0].ror | https://ror.org/04e6y1282 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I100188998 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Harbin University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Meiwen Zhu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, China |
| authorships[3].author.id | https://openalex.org/A5078594152 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7362-7432 |
| authorships[3].author.display_name | Qinrui Dai |
| authorships[3].affiliations[0].raw_affiliation_string | China Aerospace Science and Technology Corp No 8 Academy-Shanghai Institute of Spacecraft Equipment, Shanghai, China |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Qiuming Dai |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | China Aerospace Science and Technology Corp No 8 Academy-Shanghai Institute of Spacecraft Equipment, Shanghai, China |
| authorships[4].author.id | https://openalex.org/A5101769930 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8135-6951 |
| authorships[4].author.display_name | Jun Ni |
| authorships[4].affiliations[0].raw_affiliation_string | China Aerospace Science and Technology Corp No 8 Academy-Shanghai Institute of Spacecraft Equipment, Shanghai, China |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jun Ni |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | China Aerospace Science and Technology Corp No 8 Academy-Shanghai Institute of Spacecraft Equipment, Shanghai, China |
| authorships[5].author.id | https://openalex.org/A5113046238 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Xianli Liu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I100188998 |
| authorships[5].affiliations[0].raw_affiliation_string | Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, China |
| authorships[5].institutions[0].id | https://openalex.org/I100188998 |
| authorships[5].institutions[0].ror | https://ror.org/04e6y1282 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I100188998 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Harbin University of Science and Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xianli Liu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, China |
| authorships[6].author.id | https://openalex.org/A5100406103 |
| authorships[6].author.orcid | https://orcid.org/0009-0009-1625-3938 |
| authorships[6].author.display_name | Xinyu Li |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I100188998 |
| authorships[6].affiliations[0].raw_affiliation_string | Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, China |
| authorships[6].institutions[0].id | https://openalex.org/I100188998 |
| authorships[6].institutions[0].ror | https://ror.org/04e6y1282 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I100188998 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Harbin University of Science and Technology |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Xinyu Li |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2024.3481031 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ACPP-Net: Enhancing Strip Steel Surface Defect Detection With Efficient Adaptive Convolution and Channel-Spatial Pyramid Pooling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W2953234277, https://openalex.org/W2626256601, https://openalex.org/W2022849497, https://openalex.org/W3081299480, https://openalex.org/W2407190427, https://openalex.org/W2919210741, https://openalex.org/W2907584218, https://openalex.org/W3002446410, https://openalex.org/W4390224712, https://openalex.org/W4322096758 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2024.3481031 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2024.3481031 |
| primary_location.id | doi:10.1109/access.2024.3481031 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2024.3481031 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3124804470, https://openalex.org/W3139248563, https://openalex.org/W3134639409, https://openalex.org/W2963037989, https://openalex.org/W2570343428, https://openalex.org/W6750227808, https://openalex.org/W3018757597, https://openalex.org/W6798838024, https://openalex.org/W2193145675, https://openalex.org/W2963351448, https://openalex.org/W2183182206, https://openalex.org/W6620707391, https://openalex.org/W4395063238, https://openalex.org/W3108566774, https://openalex.org/W4317796687, https://openalex.org/W4312615734, https://openalex.org/W3132963652, https://openalex.org/W4225321635, https://openalex.org/W4285082122, https://openalex.org/W4312442605, https://openalex.org/W3208023024, https://openalex.org/W4381849166, https://openalex.org/W3042011474, https://openalex.org/W4377981744, https://openalex.org/W4396753390, https://openalex.org/W4399871128, https://openalex.org/W4389924885, https://openalex.org/W4392251676, https://openalex.org/W4387872575, https://openalex.org/W4396941541, https://openalex.org/W3035414587, https://openalex.org/W4385245566, https://openalex.org/W3177052299, https://openalex.org/W4383890466, https://openalex.org/W4388979504, https://openalex.org/W4281790833, https://openalex.org/W2092072518, https://openalex.org/W2962858109, https://openalex.org/W3184439416, https://openalex.org/W3106250896, https://openalex.org/W4293584584, https://openalex.org/W639708223 |
| referenced_works_count | 42 |
| abstract_inverted_index.a | 101, 138 |
| abstract_inverted_index.As | 0 |
| abstract_inverted_index.By | 79 |
| abstract_inverted_index.To | 35 |
| abstract_inverted_index.an | 1, 48 |
| abstract_inverted_index.at | 124 |
| abstract_inverted_index.by | 88 |
| abstract_inverted_index.in | 4, 59, 130 |
| abstract_inverted_index.is | 57, 68, 107, 145, 198 |
| abstract_inverted_index.of | 113, 134, 151, 166, 195 |
| abstract_inverted_index.on | 171 |
| abstract_inverted_index.to | 13, 25, 70, 97, 109, 200, 216 |
| abstract_inverted_index.The | 192 |
| abstract_inverted_index.and | 31, 39, 45, 93, 116, 164, 174, 183, 210, 218 |
| abstract_inverted_index.due | 24 |
| abstract_inverted_index.for | 74 |
| abstract_inverted_index.mAP | 185 |
| abstract_inverted_index.the | 41, 66, 72, 111, 131, 148, 152, 159, 162, 172, 206 |
| abstract_inverted_index.This | 121, 155 |
| abstract_inverted_index.high | 208 |
| abstract_inverted_index.into | 147 |
| abstract_inverted_index.meet | 71 |
| abstract_inverted_index.need | 73 |
| abstract_inverted_index.part | 150 |
| abstract_inverted_index.this | 60, 84, 196 |
| abstract_inverted_index.thus | 214 |
| abstract_inverted_index.tiny | 27 |
| abstract_inverted_index.71.1% | 184 |
| abstract_inverted_index.82.1% | 182 |
| abstract_inverted_index.Ghost | 64, 82 |
| abstract_inverted_index.These | 203 |
| abstract_inverted_index.final | 149 |
| abstract_inverted_index.helps | 158 |
| abstract_inverted_index.model | 197 |
| abstract_inverted_index.novel | 102 |
| abstract_inverted_index.other | 201 |
| abstract_inverted_index.rapid | 75 |
| abstract_inverted_index.size, | 28 |
| abstract_inverted_index.steel | 7, 18, 50, 76, 114, 167, 220 |
| abstract_inverted_index.strip | 51 |
| abstract_inverted_index.their | 26, 118 |
| abstract_inverted_index.these | 37 |
| abstract_inverted_index.while | 187 |
| abstract_inverted_index.(CSPP) | 143 |
| abstract_inverted_index.aiding | 129 |
| abstract_inverted_index.defect | 11, 53, 77, 98, 127 |
| abstract_inverted_index.ensure | 14 |
| abstract_inverted_index.excels | 123 |
| abstract_inverted_index.modern | 5 |
| abstract_inverted_index.module | 85, 122, 144, 156 |
| abstract_inverted_index.speed, | 47 |
| abstract_inverted_index.study. | 61 |
| abstract_inverted_index.subtle | 119 |
| abstract_inverted_index.uneven | 32 |
| abstract_inverted_index.NEU-DET | 173 |
| abstract_inverted_index.address | 36, 110 |
| abstract_inverted_index.balance | 42 |
| abstract_inverted_index.between | 43 |
| abstract_inverted_index.channel | 139 |
| abstract_inverted_index.complex | 126 |
| abstract_inverted_index.defects | 20, 115 |
| abstract_inverted_index.diverse | 29 |
| abstract_inverted_index.feature | 33, 103 |
| abstract_inverted_index.module, | 105 |
| abstract_inverted_index.network | 160 |
| abstract_inverted_index.pooling | 142 |
| abstract_inverted_index.present | 21 |
| abstract_inverted_index.pyramid | 141 |
| abstract_inverted_index.results | 204 |
| abstract_inverted_index.satisfy | 40 |
| abstract_inverted_index.spatial | 140 |
| abstract_inverted_index.surface | 10, 19, 52 |
| abstract_inverted_index.various | 135 |
| abstract_inverted_index.weights | 96 |
| abstract_inverted_index.Adaptive | 63, 81 |
| abstract_inverted_index.Firstly, | 62 |
| abstract_inverted_index.GC10-DET | 175 |
| abstract_inverted_index.However, | 17 |
| abstract_inverted_index.accuracy | 44, 209 |
| abstract_inverted_index.accurate | 132 |
| abstract_inverted_index.backbone | 153 |
| abstract_inverted_index.datasets | 176 |
| abstract_inverted_index.defects. | 136, 168 |
| abstract_inverted_index.material | 3 |
| abstract_inverted_index.methods. | 202 |
| abstract_inverted_index.network, | 55 |
| abstract_inverted_index.network. | 154 |
| abstract_inverted_index.proposed | 58, 108 |
| abstract_inverted_index.reducing | 89 |
| abstract_inverted_index.requires | 8 |
| abstract_inverted_index.superior | 179, 199 |
| abstract_inverted_index.ACPP-Net, | 56 |
| abstract_inverted_index.Extensive | 169 |
| abstract_inverted_index.LM-block, | 67 |
| abstract_inverted_index.Secondly, | 100 |
| abstract_inverted_index.achieving | 181 |
| abstract_inverted_index.assigning | 95 |
| abstract_inverted_index.capturing | 125 |
| abstract_inverted_index.detection | 12, 46, 54, 190, 193, 212, 221 |
| abstract_inverted_index.efficient | 49, 217 |
| abstract_inverted_index.features. | 99 |
| abstract_inverted_index.increases | 86 |
| abstract_inverted_index.industry, | 6 |
| abstract_inverted_index.real-time | 9, 189, 211 |
| abstract_inverted_index.redundant | 90 |
| abstract_inverted_index.textures, | 128 |
| abstract_inverted_index.FEM-block, | 106 |
| abstract_inverted_index.adaptively | 94 |
| abstract_inverted_index.challenges | 23, 38 |
| abstract_inverted_index.complexity | 112 |
| abstract_inverted_index.detection. | 78 |
| abstract_inverted_index.efficiency | 87 |
| abstract_inverted_index.introduced | 69 |
| abstract_inverted_index.processes. | 222 |
| abstract_inverted_index.understand | 161 |
| abstract_inverted_index.acquisition | 92 |
| abstract_inverted_index.demonstrate | 177, 205 |
| abstract_inverted_index.distinguish | 117 |
| abstract_inverted_index.effectively | 157 |
| abstract_inverted_index.enhancement | 104 |
| abstract_inverted_index.experiments | 170 |
| abstract_inverted_index.information | 91 |
| abstract_inverted_index.integrating | 80 |
| abstract_inverted_index.maintaining | 188 |
| abstract_inverted_index.morphology, | 30 |
| abstract_inverted_index.performance | 194 |
| abstract_inverted_index.significant | 22 |
| abstract_inverted_index.Convolution, | 65, 83 |
| abstract_inverted_index.contributing | 215 |
| abstract_inverted_index.differences. | 120 |
| abstract_inverted_index.distribution | 165 |
| abstract_inverted_index.high-quality | 15, 219 |
| abstract_inverted_index.incorporated | 146 |
| abstract_inverted_index.performance, | 180 |
| abstract_inverted_index.Additionally, | 137 |
| abstract_inverted_index.capabilities, | 213 |
| abstract_inverted_index.capabilities. | 191 |
| abstract_inverted_index.distribution. | 34 |
| abstract_inverted_index.indispensable | 2 |
| abstract_inverted_index.respectively, | 186 |
| abstract_inverted_index.manufacturing. | 16 |
| abstract_inverted_index.model’s | 207 |
| abstract_inverted_index.characteristics | 163 |
| abstract_inverted_index.differentiation | 133 |
| abstract_inverted_index.ACPP-Net’s | 178 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.79315548 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |