AcrNET: predicting anti-CRISPR with deep learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1093/bioinformatics/btad259
Motivation As an important group of proteins discovered in phages, anti-CRISPR inhibits the activity of the immune system of bacteria (i.e. CRISPR-Cas), offering promise for gene editing and phage therapy. However, the prediction and discovery of anti-CRISPR are challenging due to their high variability and fast evolution. Existing biological studies rely on known CRISPR and anti-CRISPR pairs, which may not be practical considering the huge number. Computational methods struggle with prediction performance. To address these issues, we propose a novel deep neural network for anti-CRISPR analysis (AcrNET), which achieves significant performance. Results On both the cross-fold and cross-dataset validation, our method outperforms the state-of-the-art methods. Notably, AcrNET improves the prediction performance by at least 15% regarding the F1 score for the cross-dataset test problem comparing with state-of-art Deep Learning method. Moreover, AcrNET is the first computational method to predict the detailed anti-CRISPR classes, which may help illustrate the anti-CRISPR mechanism. Taking advantage of a Transformer protein language model ESM-1b, which was pre-trained on 250 million protein sequences, AcrNET overcomes the data scarcity problem. Extensive experiments and analysis suggest that the Transformer model feature, evolutionary feature, and local structure feature complement each other, which indicates the critical properties of anti-CRISPR proteins. AlphaFold prediction, further motif analysis, and docking experiments further demonstrate that AcrNET can capture the evolutionarily conserved pattern and the interaction between anti-CRISPR and the target implicitly. Availability and implementation Web server: https://proj.cse.cuhk.edu.hk/aihlab/AcrNET/. Training code and pre-trained model are available at.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/bioinformatics/btad259
- https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btad259/50061469/btad259.pdf
- OA Status
- gold
- Cited By
- 16
- References
- 49
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4366603469
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4366603469Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/bioinformatics/btad259Digital Object Identifier
- Title
-
AcrNET: predicting anti-CRISPR with deep learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-21Full publication date if available
- Authors
-
Yunxiang Li, Yumeng Wei, Sheng Xu, Qingxiong Tan, Licheng Zong, Jiuming Wang, Yixuan Wang, Jiayang Chen, Liang Hong, Yu LiList of authors in order
- Landing page
-
https://doi.org/10.1093/bioinformatics/btad259Publisher landing page
- PDF URL
-
https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btad259/50061469/btad259.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btad259/50061469/btad259.pdfDirect OA link when available
- Concepts
-
CRISPR, Computer science, Artificial intelligence, Deep learning, Computational biology, Biology, Genetics, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
16Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 10, 2024: 6Per-year citation counts (last 5 years)
- References (count)
-
49Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4366603469 |
|---|---|
| doi | https://doi.org/10.1093/bioinformatics/btad259 |
| ids.doi | https://doi.org/10.1093/bioinformatics/btad259 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37084259 |
| ids.openalex | https://openalex.org/W4366603469 |
| fwci | 2.97072652 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000077321 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Deep Learning |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D016571 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Neural Networks, Computer |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000072669 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Gene Editing |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D011506 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Proteins |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D001435 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Bacteriophages |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000077321 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Deep Learning |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D016571 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Neural Networks, Computer |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000072669 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Gene Editing |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D011506 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Proteins |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D001435 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Bacteriophages |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D000077321 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Deep Learning |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D016571 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Neural Networks, Computer |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000072669 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Gene Editing |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D011506 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Proteins |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D001435 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Bacteriophages |
| type | article |
| title | AcrNET: predicting anti-CRISPR with deep learning |
| awards[0].id | https://openalex.org/G6709416133 |
| awards[0].funder_id | https://openalex.org/F4320322942 |
| awards[0].display_name | |
| awards[0].funder_award_id | 4937025 |
| awards[0].funder_display_name | Chinese University of Hong Kong |
| awards[1].id | https://openalex.org/G5248485515 |
| awards[1].funder_id | https://openalex.org/F4320322942 |
| awards[1].display_name | |
| awards[1].funder_award_id | 5501517 |
| awards[1].funder_display_name | Chinese University of Hong Kong |
| awards[2].id | https://openalex.org/G1495595508 |
| awards[2].funder_id | https://openalex.org/F4320322942 |
| awards[2].display_name | |
| awards[2].funder_award_id | 5501329 |
| awards[2].funder_display_name | Chinese University of Hong Kong |
| awards[3].id | https://openalex.org/G4809109598 |
| awards[3].funder_id | https://openalex.org/F4320322942 |
| awards[3].display_name | |
| awards[3].funder_award_id | 4937026 |
| awards[3].funder_display_name | Chinese University of Hong Kong |
| biblio.issue | 5 |
| biblio.volume | 39 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10878 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | CRISPR and Genetic Engineering |
| topics[1].id | https://openalex.org/T10521 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.975600004196167 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | RNA and protein synthesis mechanisms |
| topics[2].id | https://openalex.org/T11764 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9467999935150146 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1311 |
| topics[2].subfield.display_name | Genetics |
| topics[2].display_name | Evolution and Genetic Dynamics |
| funders[0].id | https://openalex.org/F4320322942 |
| funders[0].ror | https://ror.org/00t33hh48 |
| funders[0].display_name | Chinese University of Hong Kong |
| funders[1].id | https://openalex.org/F4320326427 |
| funders[1].ror | |
| funders[1].display_name | Innovation and Technology Fund |
| is_xpac | False |
| apc_list.value | 3618 |
| apc_list.currency | USD |
| apc_list.value_usd | 3618 |
| apc_paid.value | 3618 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3618 |
| concepts[0].id | https://openalex.org/C98108389 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9045090675354004 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q412563 |
| concepts[0].display_name | CRISPR |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6359436511993408 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4778268337249756 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.47443047165870667 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C70721500 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4304066300392151 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[4].display_name | Computational biology |
| concepts[5].id | https://openalex.org/C86803240 |
| concepts[5].level | 0 |
| concepts[5].score | 0.2561238408088684 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[5].display_name | Biology |
| concepts[6].id | https://openalex.org/C54355233 |
| concepts[6].level | 1 |
| concepts[6].score | 0.12735775113105774 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[6].display_name | Genetics |
| concepts[7].id | https://openalex.org/C104317684 |
| concepts[7].level | 2 |
| concepts[7].score | 0.06873154640197754 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[7].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/crispr |
| keywords[0].score | 0.9045090675354004 |
| keywords[0].display_name | CRISPR |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6359436511993408 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.4778268337249756 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/deep-learning |
| keywords[3].score | 0.47443047165870667 |
| keywords[3].display_name | Deep learning |
| keywords[4].id | https://openalex.org/keywords/computational-biology |
| keywords[4].score | 0.4304066300392151 |
| keywords[4].display_name | Computational biology |
| keywords[5].id | https://openalex.org/keywords/biology |
| keywords[5].score | 0.2561238408088684 |
| keywords[5].display_name | Biology |
| keywords[6].id | https://openalex.org/keywords/genetics |
| keywords[6].score | 0.12735775113105774 |
| keywords[6].display_name | Genetics |
| keywords[7].id | https://openalex.org/keywords/gene |
| keywords[7].score | 0.06873154640197754 |
| keywords[7].display_name | Gene |
| language | en |
| locations[0].id | doi:10.1093/bioinformatics/btad259 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S52395412 |
| locations[0].source.issn | 1367-4803, 1367-4811 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1367-4803 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Bioinformatics |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btad259/50061469/btad259.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Bioinformatics |
| locations[0].landing_page_url | https://doi.org/10.1093/bioinformatics/btad259 |
| locations[1].id | pmid:37084259 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Bioinformatics (Oxford, England) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37084259 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10174705 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10174705/pdf/btad259.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Bioinformatics |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10174705 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100690430 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4743-0975 |
| authorships[0].author.display_name | Yunxiang Li |
| authorships[0].countries | HK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I177725633 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, The Chinese University of Hong Kong , Sha Tin, Hong Kong SAR 999077, China |
| authorships[0].institutions[0].id | https://openalex.org/I177725633 |
| authorships[0].institutions[0].ror | https://ror.org/00t33hh48 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I177725633 |
| authorships[0].institutions[0].country_code | HK |
| authorships[0].institutions[0].display_name | Chinese University of Hong Kong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yunxiang Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Engineering, The Chinese University of Hong Kong , Sha Tin, Hong Kong SAR 999077, China |
| authorships[1].author.id | https://openalex.org/A5018102503 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yumeng Wei |
| authorships[1].countries | HK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I177725633 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, The Chinese University of Hong Kong , Sha Tin, Hong Kong SAR 999077, China |
| authorships[1].institutions[0].id | https://openalex.org/I177725633 |
| authorships[1].institutions[0].ror | https://ror.org/00t33hh48 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I177725633 |
| authorships[1].institutions[0].country_code | HK |
| authorships[1].institutions[0].display_name | Chinese University of Hong Kong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yumeng Wei |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Engineering, The Chinese University of Hong Kong , Sha Tin, Hong Kong SAR 999077, China |
| authorships[2].author.id | https://openalex.org/A5100604665 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6507-9122 |
| authorships[2].author.display_name | Sheng Xu |
| authorships[2].countries | HK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I177725633 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, The Chinese University of Hong Kong , Sha Tin, Hong Kong SAR 999077, China |
| authorships[2].institutions[0].id | https://openalex.org/I177725633 |
| authorships[2].institutions[0].ror | https://ror.org/00t33hh48 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I177725633 |
| authorships[2].institutions[0].country_code | HK |
| authorships[2].institutions[0].display_name | Chinese University of Hong Kong |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sheng Xu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science and Engineering, The Chinese University of Hong Kong , Sha Tin, Hong Kong SAR 999077, China |
| authorships[3].author.id | https://openalex.org/A5101846980 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Qingxiong Tan |
| authorships[3].countries | HK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I177725633 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, The Chinese University of Hong Kong , Sha Tin, Hong Kong SAR 999077, China |
| authorships[3].institutions[0].id | https://openalex.org/I177725633 |
| authorships[3].institutions[0].ror | https://ror.org/00t33hh48 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I177725633 |
| authorships[3].institutions[0].country_code | HK |
| authorships[3].institutions[0].display_name | Chinese University of Hong Kong |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Qingxiong Tan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science and Engineering, The Chinese University of Hong Kong , Sha Tin, Hong Kong SAR 999077, China |
| authorships[4].author.id | https://openalex.org/A5087040829 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5418-005X |
| authorships[4].author.display_name | Licheng Zong |
| authorships[4].countries | HK |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I177725633 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, The Chinese University of Hong Kong , Sha Tin, Hong Kong SAR 999077, China |
| authorships[4].institutions[0].id | https://openalex.org/I177725633 |
| authorships[4].institutions[0].ror | https://ror.org/00t33hh48 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I177725633 |
| authorships[4].institutions[0].country_code | HK |
| authorships[4].institutions[0].display_name | Chinese University of Hong Kong |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Licheng Zong |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science and Engineering, The Chinese University of Hong Kong , Sha Tin, Hong Kong SAR 999077, China |
| authorships[5].author.id | https://openalex.org/A5078001917 |
| authorships[5].author.orcid | https://orcid.org/0009-0003-9591-156X |
| authorships[5].author.display_name | Jiuming Wang |
| authorships[5].countries | HK |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I177725633 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, The Chinese University of Hong Kong , Sha Tin, Hong Kong SAR 999077, China |
| authorships[5].institutions[0].id | https://openalex.org/I177725633 |
| authorships[5].institutions[0].ror | https://ror.org/00t33hh48 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I177725633 |
| authorships[5].institutions[0].country_code | HK |
| authorships[5].institutions[0].display_name | Chinese University of Hong Kong |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jiuming Wang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Computer Science and Engineering, The Chinese University of Hong Kong , Sha Tin, Hong Kong SAR 999077, China |
| authorships[6].author.id | https://openalex.org/A5100408474 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8989-3129 |
| authorships[6].author.display_name | Yixuan Wang |
| authorships[6].countries | HK |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I177725633 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, The Chinese University of Hong Kong , Sha Tin, Hong Kong SAR 999077, China |
| authorships[6].institutions[0].id | https://openalex.org/I177725633 |
| authorships[6].institutions[0].ror | https://ror.org/00t33hh48 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I177725633 |
| authorships[6].institutions[0].country_code | HK |
| authorships[6].institutions[0].display_name | Chinese University of Hong Kong |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Yixuan Wang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Computer Science and Engineering, The Chinese University of Hong Kong , Sha Tin, Hong Kong SAR 999077, China |
| authorships[7].author.id | https://openalex.org/A5060720882 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-4148-7420 |
| authorships[7].author.display_name | Jiayang Chen |
| authorships[7].countries | HK |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I177725633 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, The Chinese University of Hong Kong , Sha Tin, Hong Kong SAR 999077, China |
| authorships[7].institutions[0].id | https://openalex.org/I177725633 |
| authorships[7].institutions[0].ror | https://ror.org/00t33hh48 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I177725633 |
| authorships[7].institutions[0].country_code | HK |
| authorships[7].institutions[0].display_name | Chinese University of Hong Kong |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Jiayang Chen |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Computer Science and Engineering, The Chinese University of Hong Kong , Sha Tin, Hong Kong SAR 999077, China |
| authorships[8].author.id | https://openalex.org/A5103017892 |
| authorships[8].author.orcid | https://orcid.org/0009-0007-4081-8076 |
| authorships[8].author.display_name | Liang Hong |
| authorships[8].countries | HK |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I177725633 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, The Chinese University of Hong Kong , Sha Tin, Hong Kong SAR 999077, China |
| authorships[8].institutions[0].id | https://openalex.org/I177725633 |
| authorships[8].institutions[0].ror | https://ror.org/00t33hh48 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I177725633 |
| authorships[8].institutions[0].country_code | HK |
| authorships[8].institutions[0].display_name | Chinese University of Hong Kong |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Liang Hong |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Computer Science and Engineering, The Chinese University of Hong Kong , Sha Tin, Hong Kong SAR 999077, China |
| authorships[9].author.id | https://openalex.org/A5100345753 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-3664-6722 |
| authorships[9].author.display_name | Yu Li |
| authorships[9].countries | HK |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I177725633 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, The Chinese University of Hong Kong , Sha Tin, Hong Kong SAR 999077, China |
| authorships[9].institutions[0].id | https://openalex.org/I177725633 |
| authorships[9].institutions[0].ror | https://ror.org/00t33hh48 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I177725633 |
| authorships[9].institutions[0].country_code | HK |
| authorships[9].institutions[0].display_name | Chinese University of Hong Kong |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Yu Li |
| authorships[9].is_corresponding | True |
| authorships[9].raw_affiliation_strings | Department of Computer Science and Engineering, The Chinese University of Hong Kong , Sha Tin, Hong Kong SAR 999077, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btad259/50061469/btad259.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | AcrNET: predicting anti-CRISPR with deep learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10878 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | CRISPR and Genetic Engineering |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W3215138031, https://openalex.org/W4321369474, https://openalex.org/W3009238340, https://openalex.org/W4360585206, https://openalex.org/W4213036952, https://openalex.org/W4285208911, https://openalex.org/W3082895349, https://openalex.org/W4213079790, https://openalex.org/W2248239756 |
| cited_by_count | 16 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 10 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1093/bioinformatics/btad259 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S52395412 |
| best_oa_location.source.issn | 1367-4803, 1367-4811 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1367-4803 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Bioinformatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btad259/50061469/btad259.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Bioinformatics |
| best_oa_location.landing_page_url | https://doi.org/10.1093/bioinformatics/btad259 |
| primary_location.id | doi:10.1093/bioinformatics/btad259 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S52395412 |
| primary_location.source.issn | 1367-4803, 1367-4811 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1367-4803 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Bioinformatics |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btad259/50061469/btad259.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Bioinformatics |
| primary_location.landing_page_url | https://doi.org/10.1093/bioinformatics/btad259 |
| publication_date | 2023-04-21 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4211083314, https://openalex.org/W2043083543, https://openalex.org/W3158075195, https://openalex.org/W3041180919, https://openalex.org/W6755207826, https://openalex.org/W2068361619, https://openalex.org/W2757079914, https://openalex.org/W2119331235, https://openalex.org/W3015370321, https://openalex.org/W3045990256, https://openalex.org/W2108581046, https://openalex.org/W2054394841, https://openalex.org/W2129279466, https://openalex.org/W2744099942, https://openalex.org/W3174738524, https://openalex.org/W6652574002, https://openalex.org/W1981264193, https://openalex.org/W2623277795, https://openalex.org/W1899503782, https://openalex.org/W2572080171, https://openalex.org/W2766352633, https://openalex.org/W2030793934, https://openalex.org/W1592870802, https://openalex.org/W3011910186, https://openalex.org/W2140992384, https://openalex.org/W2430331709, https://openalex.org/W2766874121, https://openalex.org/W2564226239, https://openalex.org/W3146944767, https://openalex.org/W6790156245, https://openalex.org/W2890107400, https://openalex.org/W2102461176, https://openalex.org/W2561826764, https://openalex.org/W4281963872, https://openalex.org/W2612935389, https://openalex.org/W3029055906, https://openalex.org/W3097237310, https://openalex.org/W2562674913, https://openalex.org/W2615136515, https://openalex.org/W3015438624, https://openalex.org/W3024100655, https://openalex.org/W1913949000, https://openalex.org/W2115434912, https://openalex.org/W2908663744, https://openalex.org/W2008708467, https://openalex.org/W3199468887, https://openalex.org/W3126039337, https://openalex.org/W2896457183, https://openalex.org/W4389685276 |
| referenced_works_count | 49 |
| abstract_inverted_index.a | 79, 154 |
| abstract_inverted_index.As | 2 |
| abstract_inverted_index.F1 | 118 |
| abstract_inverted_index.On | 93 |
| abstract_inverted_index.To | 73 |
| abstract_inverted_index.an | 3 |
| abstract_inverted_index.at | 113 |
| abstract_inverted_index.be | 61 |
| abstract_inverted_index.by | 112 |
| abstract_inverted_index.in | 9 |
| abstract_inverted_index.is | 133 |
| abstract_inverted_index.of | 6, 15, 19, 36, 153, 198 |
| abstract_inverted_index.on | 52, 163 |
| abstract_inverted_index.to | 41, 138 |
| abstract_inverted_index.we | 77 |
| abstract_inverted_index.15% | 115 |
| abstract_inverted_index.250 | 164 |
| abstract_inverted_index.Web | 231 |
| abstract_inverted_index.and | 28, 34, 45, 55, 97, 176, 186, 206, 219, 224, 229, 236 |
| abstract_inverted_index.are | 38, 239 |
| abstract_inverted_index.at. | 241 |
| abstract_inverted_index.can | 213 |
| abstract_inverted_index.due | 40 |
| abstract_inverted_index.for | 25, 84, 120 |
| abstract_inverted_index.may | 59, 145 |
| abstract_inverted_index.not | 60 |
| abstract_inverted_index.our | 100 |
| abstract_inverted_index.the | 13, 16, 32, 64, 95, 103, 109, 117, 121, 134, 140, 148, 170, 180, 195, 215, 220, 225 |
| abstract_inverted_index.was | 161 |
| abstract_inverted_index.Deep | 128 |
| abstract_inverted_index.both | 94 |
| abstract_inverted_index.code | 235 |
| abstract_inverted_index.data | 171 |
| abstract_inverted_index.deep | 81 |
| abstract_inverted_index.each | 191 |
| abstract_inverted_index.fast | 46 |
| abstract_inverted_index.gene | 26 |
| abstract_inverted_index.help | 146 |
| abstract_inverted_index.high | 43 |
| abstract_inverted_index.huge | 65 |
| abstract_inverted_index.rely | 51 |
| abstract_inverted_index.test | 123 |
| abstract_inverted_index.that | 179, 211 |
| abstract_inverted_index.with | 70, 126 |
| abstract_inverted_index.(i.e. | 21 |
| abstract_inverted_index.first | 135 |
| abstract_inverted_index.group | 5 |
| abstract_inverted_index.known | 53 |
| abstract_inverted_index.least | 114 |
| abstract_inverted_index.local | 187 |
| abstract_inverted_index.model | 158, 182, 238 |
| abstract_inverted_index.motif | 204 |
| abstract_inverted_index.novel | 80 |
| abstract_inverted_index.phage | 29 |
| abstract_inverted_index.score | 119 |
| abstract_inverted_index.their | 42 |
| abstract_inverted_index.these | 75 |
| abstract_inverted_index.which | 58, 88, 144, 160, 193 |
| abstract_inverted_index.AcrNET | 107, 132, 168, 212 |
| abstract_inverted_index.CRISPR | 54 |
| abstract_inverted_index.Taking | 151 |
| abstract_inverted_index.immune | 17 |
| abstract_inverted_index.method | 101, 137 |
| abstract_inverted_index.neural | 82 |
| abstract_inverted_index.other, | 192 |
| abstract_inverted_index.pairs, | 57 |
| abstract_inverted_index.system | 18 |
| abstract_inverted_index.target | 226 |
| abstract_inverted_index.ESM-1b, | 159 |
| abstract_inverted_index.Results | 92 |
| abstract_inverted_index.address | 74 |
| abstract_inverted_index.between | 222 |
| abstract_inverted_index.capture | 214 |
| abstract_inverted_index.docking | 207 |
| abstract_inverted_index.editing | 27 |
| abstract_inverted_index.feature | 189 |
| abstract_inverted_index.further | 203, 209 |
| abstract_inverted_index.issues, | 76 |
| abstract_inverted_index.method. | 130 |
| abstract_inverted_index.methods | 68 |
| abstract_inverted_index.million | 165 |
| abstract_inverted_index.network | 83 |
| abstract_inverted_index.number. | 66 |
| abstract_inverted_index.pattern | 218 |
| abstract_inverted_index.phages, | 10 |
| abstract_inverted_index.predict | 139 |
| abstract_inverted_index.problem | 124 |
| abstract_inverted_index.promise | 24 |
| abstract_inverted_index.propose | 78 |
| abstract_inverted_index.protein | 156, 166 |
| abstract_inverted_index.server: | 232 |
| abstract_inverted_index.studies | 50 |
| abstract_inverted_index.suggest | 178 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Existing | 48 |
| abstract_inverted_index.However, | 31 |
| abstract_inverted_index.Learning | 129 |
| abstract_inverted_index.Notably, | 106 |
| abstract_inverted_index.Training | 234 |
| abstract_inverted_index.achieves | 89 |
| abstract_inverted_index.activity | 14 |
| abstract_inverted_index.analysis | 86, 177 |
| abstract_inverted_index.bacteria | 20 |
| abstract_inverted_index.classes, | 143 |
| abstract_inverted_index.critical | 196 |
| abstract_inverted_index.detailed | 141 |
| abstract_inverted_index.feature, | 183, 185 |
| abstract_inverted_index.improves | 108 |
| abstract_inverted_index.inhibits | 12 |
| abstract_inverted_index.language | 157 |
| abstract_inverted_index.methods. | 105 |
| abstract_inverted_index.offering | 23 |
| abstract_inverted_index.problem. | 173 |
| abstract_inverted_index.proteins | 7 |
| abstract_inverted_index.scarcity | 172 |
| abstract_inverted_index.struggle | 69 |
| abstract_inverted_index.therapy. | 30 |
| abstract_inverted_index.(AcrNET), | 87 |
| abstract_inverted_index.AlphaFold | 201 |
| abstract_inverted_index.Extensive | 174 |
| abstract_inverted_index.Moreover, | 131 |
| abstract_inverted_index.advantage | 152 |
| abstract_inverted_index.analysis, | 205 |
| abstract_inverted_index.available | 240 |
| abstract_inverted_index.comparing | 125 |
| abstract_inverted_index.conserved | 217 |
| abstract_inverted_index.discovery | 35 |
| abstract_inverted_index.important | 4 |
| abstract_inverted_index.indicates | 194 |
| abstract_inverted_index.overcomes | 169 |
| abstract_inverted_index.practical | 62 |
| abstract_inverted_index.proteins. | 200 |
| abstract_inverted_index.regarding | 116 |
| abstract_inverted_index.structure | 188 |
| abstract_inverted_index.Motivation | 1 |
| abstract_inverted_index.biological | 49 |
| abstract_inverted_index.complement | 190 |
| abstract_inverted_index.cross-fold | 96 |
| abstract_inverted_index.discovered | 8 |
| abstract_inverted_index.evolution. | 47 |
| abstract_inverted_index.illustrate | 147 |
| abstract_inverted_index.mechanism. | 150 |
| abstract_inverted_index.prediction | 33, 71, 110 |
| abstract_inverted_index.properties | 197 |
| abstract_inverted_index.sequences, | 167 |
| abstract_inverted_index.Transformer | 155, 181 |
| abstract_inverted_index.anti-CRISPR | 11, 37, 56, 85, 142, 149, 199, 223 |
| abstract_inverted_index.challenging | 39 |
| abstract_inverted_index.considering | 63 |
| abstract_inverted_index.demonstrate | 210 |
| abstract_inverted_index.experiments | 175, 208 |
| abstract_inverted_index.implicitly. | 227 |
| abstract_inverted_index.interaction | 221 |
| abstract_inverted_index.outperforms | 102 |
| abstract_inverted_index.performance | 111 |
| abstract_inverted_index.pre-trained | 162, 237 |
| abstract_inverted_index.prediction, | 202 |
| abstract_inverted_index.significant | 90 |
| abstract_inverted_index.validation, | 99 |
| abstract_inverted_index.variability | 44 |
| abstract_inverted_index.Availability | 228 |
| abstract_inverted_index.CRISPR-Cas), | 22 |
| abstract_inverted_index.evolutionary | 184 |
| abstract_inverted_index.performance. | 72, 91 |
| abstract_inverted_index.state-of-art | 127 |
| abstract_inverted_index.Computational | 67 |
| abstract_inverted_index.computational | 136 |
| abstract_inverted_index.cross-dataset | 98, 122 |
| abstract_inverted_index.evolutionarily | 216 |
| abstract_inverted_index.implementation | 230 |
| abstract_inverted_index.state-of-the-art | 104 |
| abstract_inverted_index.https://proj.cse.cuhk.edu.hk/aihlab/AcrNET/. | 233 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5100345753 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 10 |
| corresponding_institution_ids | https://openalex.org/I177725633 |
| citation_normalized_percentile.value | 0.91111593 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |