ActionPiece: Contextually Tokenizing Action Sequences for Generative Recommendation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.13581
Generative recommendation (GR) is an emerging paradigm where user actions are tokenized into discrete token patterns and autoregressively generated as predictions. However, existing GR models tokenize each action independently, assigning the same fixed tokens to identical actions across all sequences without considering contextual relationships. This lack of context-awareness can lead to suboptimal performance, as the same action may hold different meanings depending on its surrounding context. To address this issue, we propose ActionPiece to explicitly incorporate context when tokenizing action sequences. In ActionPiece, each action is represented as a set of item features. Given the action sequence corpora, we construct the vocabulary by merging feature patterns as new tokens, based on their co-occurrence frequency both within individual sets and across adjacent sets. Considering the unordered nature of feature sets, we further introduce set permutation regularization, which produces multiple segmentations of action sequences with the same semantics. Our code is available at: https://github.com/google-deepmind/action_piece.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.13581
- https://arxiv.org/pdf/2502.13581
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407764389
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407764389Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.13581Digital Object Identifier
- Title
-
ActionPiece: Contextually Tokenizing Action Sequences for Generative RecommendationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-19Full publication date if available
- Authors
-
Yupeng Hou, Jianmo Ni, Zhankui He, Noveen Sachdeva, Wang-Cheng Kang, Ed H., Julian McAuley, Derek Zhiyuan ChengList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.13581Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.13581Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.13581Direct OA link when available
- Concepts
-
Generative grammar, Action (physics), Computer science, Artificial intelligence, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407764389 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.13581 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.13581 |
| ids.openalex | https://openalex.org/W4407764389 |
| fwci | |
| type | preprint |
| title | ActionPiece: Contextually Tokenizing Action Sequences for Generative Recommendation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.991599977016449 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10203 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9732999801635742 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Recommender Systems and Techniques |
| topics[2].id | https://openalex.org/T13702 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9693999886512756 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C39890363 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7647656798362732 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[0].display_name | Generative grammar |
| concepts[1].id | https://openalex.org/C2780791683 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6743399500846863 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q846785 |
| concepts[1].display_name | Action (physics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.32616350054740906 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.306252658367157 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C121332964 |
| concepts[4].level | 0 |
| concepts[4].score | 0.07562202215194702 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[4].display_name | Physics |
| concepts[5].id | https://openalex.org/C62520636 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[5].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/generative-grammar |
| keywords[0].score | 0.7647656798362732 |
| keywords[0].display_name | Generative grammar |
| keywords[1].id | https://openalex.org/keywords/action |
| keywords[1].score | 0.6743399500846863 |
| keywords[1].display_name | Action (physics) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.32616350054740906 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.306252658367157 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/physics |
| keywords[4].score | 0.07562202215194702 |
| keywords[4].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.13581 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.13581 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.13581 |
| locations[1].id | doi:10.48550/arxiv.2502.13581 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.13581 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5052347581 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0747-8010 |
| authorships[0].author.display_name | Yupeng Hou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hou, Yupeng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5077817759 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6863-8073 |
| authorships[1].author.display_name | Jianmo Ni |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ni, Jianmo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5061585298 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9139-8004 |
| authorships[2].author.display_name | Zhankui He |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | He, Zhankui |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5005200778 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1228-746X |
| authorships[3].author.display_name | Noveen Sachdeva |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sachdeva, Noveen |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5090597599 |
| authorships[4].author.orcid | https://orcid.org/0009-0006-8795-3665 |
| authorships[4].author.display_name | Wang-Cheng Kang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Kang, Wang-Cheng |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5028125399 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3230-5338 |
| authorships[5].author.display_name | Ed H. |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chi, Ed H. |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5021827617 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-0955-7588 |
| authorships[6].author.display_name | Julian McAuley |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | McAuley, Julian |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5055484401 |
| authorships[7].author.orcid | https://orcid.org/0009-0000-7943-8328 |
| authorships[7].author.display_name | Derek Zhiyuan Cheng |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Cheng, Derek Zhiyuan |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.13581 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ActionPiece: Contextually Tokenizing Action Sequences for Generative Recommendation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.991599977016449 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2380075625, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.13581 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.13581 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.13581 |
| primary_location.id | pmh:oai:arXiv.org:2502.13581 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.13581 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.13581 |
| publication_date | 2025-02-19 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 88 |
| abstract_inverted_index.GR | 23 |
| abstract_inverted_index.In | 81 |
| abstract_inverted_index.To | 66 |
| abstract_inverted_index.an | 4 |
| abstract_inverted_index.as | 19, 53, 87, 106 |
| abstract_inverted_index.by | 102 |
| abstract_inverted_index.is | 3, 85, 148 |
| abstract_inverted_index.of | 46, 90, 126, 139 |
| abstract_inverted_index.on | 62, 110 |
| abstract_inverted_index.to | 34, 50, 73 |
| abstract_inverted_index.we | 70, 98, 129 |
| abstract_inverted_index.Our | 146 |
| abstract_inverted_index.all | 38 |
| abstract_inverted_index.and | 16, 118 |
| abstract_inverted_index.are | 10 |
| abstract_inverted_index.at: | 150 |
| abstract_inverted_index.can | 48 |
| abstract_inverted_index.its | 63 |
| abstract_inverted_index.may | 57 |
| abstract_inverted_index.new | 107 |
| abstract_inverted_index.set | 89, 132 |
| abstract_inverted_index.the | 30, 54, 94, 100, 123, 143 |
| abstract_inverted_index.(GR) | 2 |
| abstract_inverted_index.This | 44 |
| abstract_inverted_index.both | 114 |
| abstract_inverted_index.code | 147 |
| abstract_inverted_index.each | 26, 83 |
| abstract_inverted_index.hold | 58 |
| abstract_inverted_index.into | 12 |
| abstract_inverted_index.item | 91 |
| abstract_inverted_index.lack | 45 |
| abstract_inverted_index.lead | 49 |
| abstract_inverted_index.same | 31, 55, 144 |
| abstract_inverted_index.sets | 117 |
| abstract_inverted_index.this | 68 |
| abstract_inverted_index.user | 8 |
| abstract_inverted_index.when | 77 |
| abstract_inverted_index.with | 142 |
| abstract_inverted_index.Given | 93 |
| abstract_inverted_index.based | 109 |
| abstract_inverted_index.fixed | 32 |
| abstract_inverted_index.sets, | 128 |
| abstract_inverted_index.sets. | 121 |
| abstract_inverted_index.their | 111 |
| abstract_inverted_index.token | 14 |
| abstract_inverted_index.where | 7 |
| abstract_inverted_index.which | 135 |
| abstract_inverted_index.across | 37, 119 |
| abstract_inverted_index.action | 27, 56, 79, 84, 95, 140 |
| abstract_inverted_index.issue, | 69 |
| abstract_inverted_index.models | 24 |
| abstract_inverted_index.nature | 125 |
| abstract_inverted_index.tokens | 33 |
| abstract_inverted_index.within | 115 |
| abstract_inverted_index.actions | 9, 36 |
| abstract_inverted_index.address | 67 |
| abstract_inverted_index.context | 76 |
| abstract_inverted_index.feature | 104, 127 |
| abstract_inverted_index.further | 130 |
| abstract_inverted_index.merging | 103 |
| abstract_inverted_index.propose | 71 |
| abstract_inverted_index.tokens, | 108 |
| abstract_inverted_index.without | 40 |
| abstract_inverted_index.However, | 21 |
| abstract_inverted_index.adjacent | 120 |
| abstract_inverted_index.context. | 65 |
| abstract_inverted_index.corpora, | 97 |
| abstract_inverted_index.discrete | 13 |
| abstract_inverted_index.emerging | 5 |
| abstract_inverted_index.existing | 22 |
| abstract_inverted_index.meanings | 60 |
| abstract_inverted_index.multiple | 137 |
| abstract_inverted_index.paradigm | 6 |
| abstract_inverted_index.patterns | 15, 105 |
| abstract_inverted_index.produces | 136 |
| abstract_inverted_index.sequence | 96 |
| abstract_inverted_index.tokenize | 25 |
| abstract_inverted_index.assigning | 29 |
| abstract_inverted_index.available | 149 |
| abstract_inverted_index.construct | 99 |
| abstract_inverted_index.depending | 61 |
| abstract_inverted_index.different | 59 |
| abstract_inverted_index.features. | 92 |
| abstract_inverted_index.frequency | 113 |
| abstract_inverted_index.generated | 18 |
| abstract_inverted_index.identical | 35 |
| abstract_inverted_index.introduce | 131 |
| abstract_inverted_index.sequences | 39, 141 |
| abstract_inverted_index.tokenized | 11 |
| abstract_inverted_index.unordered | 124 |
| abstract_inverted_index.Generative | 0 |
| abstract_inverted_index.contextual | 42 |
| abstract_inverted_index.explicitly | 74 |
| abstract_inverted_index.individual | 116 |
| abstract_inverted_index.semantics. | 145 |
| abstract_inverted_index.sequences. | 80 |
| abstract_inverted_index.suboptimal | 51 |
| abstract_inverted_index.tokenizing | 78 |
| abstract_inverted_index.vocabulary | 101 |
| abstract_inverted_index.ActionPiece | 72 |
| abstract_inverted_index.Considering | 122 |
| abstract_inverted_index.considering | 41 |
| abstract_inverted_index.incorporate | 75 |
| abstract_inverted_index.permutation | 133 |
| abstract_inverted_index.represented | 86 |
| abstract_inverted_index.surrounding | 64 |
| abstract_inverted_index.ActionPiece, | 82 |
| abstract_inverted_index.performance, | 52 |
| abstract_inverted_index.predictions. | 20 |
| abstract_inverted_index.co-occurrence | 112 |
| abstract_inverted_index.segmentations | 138 |
| abstract_inverted_index.independently, | 28 |
| abstract_inverted_index.recommendation | 1 |
| abstract_inverted_index.relationships. | 43 |
| abstract_inverted_index.regularization, | 134 |
| abstract_inverted_index.autoregressively | 17 |
| abstract_inverted_index.context-awareness | 47 |
| abstract_inverted_index.https://github.com/google-deepmind/action_piece. | 151 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |