Active Collection of Land Cover Sample Data from Geo-Tagged Web Texts Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.32920/14640141
Sample data plays an important role in land cover (LC) map validation. Traditionally, they are collected through field survey or image interpretation, either of which is costly, labor-intensive and time-consuming. In recent years, massive geo-tagged texts are emerging on the web and they contain valuable information for LC map validation. However, this kind of special textual data has seldom been analyzed and used for supporting LC map validation. This paper examines the potential of geo-tagged web texts as a new cost-free sample data source to assist LC map validation and proposes an active data collection approach. The proposed approach uses a customized deep web crawler to search for geo-tagged web texts based on land cover-related keywords and string-based rules matching. A data transformation based on buffer analysis is then performed to convert the collected web texts into LC sample data. Using three provinces and three municipalities directly under the Central Government in China as study areas, geo-tagged web texts were collected to validate artificial surface class of China’s 30-meter global land cover datasets (GlobeLand30-2010). A total of 6283 geo-tagged web texts were collected at a speed of 0.58 texts per second. The collected texts about built-up areas were transformed into sample data. User’s accuracy of 82.2% was achieved, which is close to that derived from formal expert validation. The preliminary results show that geo-tagged web texts are valuable ancillary data for LC map validation and the proposed approach can improve the efficiency of sample data collection.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.32920/14640141
- https://rshare.library.torontomu.ca/articles/journal_contribution/Active_Collection_of_Land_Cover_Sample_Data_from_Geo-Tagged_Web_Texts/14640141/1/files/28116570.pdf
- OA Status
- gold
- References
- 49
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4246344628
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4246344628Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.32920/14640141Digital Object Identifier
- Title
-
Active Collection of Land Cover Sample Data from Geo-Tagged Web TextsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-05-21Full publication date if available
- Authors
-
Dongyang Hou, Jun Chen, Hao Wu, Songnian Li, Feifei Chen, Weiwei Zhang ZhangList of authors in order
- Landing page
-
https://doi.org/10.32920/14640141Publisher landing page
- PDF URL
-
https://rshare.library.torontomu.ca/articles/journal_contribution/Active_Collection_of_Land_Cover_Sample_Data_from_Geo-Tagged_Web_Texts/14640141/1/files/28116570.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://rshare.library.torontomu.ca/articles/journal_contribution/Active_Collection_of_Land_Cover_Sample_Data_from_Geo-Tagged_Web_Texts/14640141/1/files/28116570.pdfDirect OA link when available
- Concepts
-
Web crawler, Sample (material), Computer science, Field (mathematics), Information retrieval, Land cover, Data collection, World Wide Web, Database, Data mining, Engineering, Land use, Civil engineering, Statistics, Chromatography, Pure mathematics, Mathematics, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
49Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4246344628 |
|---|---|
| doi | https://doi.org/10.32920/14640141 |
| ids.doi | https://doi.org/10.32920/14640141 |
| ids.openalex | https://openalex.org/W4246344628 |
| fwci | 0.0 |
| type | preprint |
| title | Active Collection of Land Cover Sample Data from Geo-Tagged Web Texts |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10757 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.9980999827384949 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3305 |
| topics[0].subfield.display_name | Geography, Planning and Development |
| topics[0].display_name | Geographic Information Systems Studies |
| topics[1].id | https://openalex.org/T11106 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9721999764442444 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Data Management and Algorithms |
| topics[2].id | https://openalex.org/T13734 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9465000033378601 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Computational Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C13743948 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7604418992996216 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q45842 |
| concepts[0].display_name | Web crawler |
| concepts[1].id | https://openalex.org/C198531522 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7099353075027466 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[1].display_name | Sample (material) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6550416946411133 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C9652623 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4945692718029022 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[3].display_name | Field (mathematics) |
| concepts[4].id | https://openalex.org/C23123220 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4855803847312927 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[4].display_name | Information retrieval |
| concepts[5].id | https://openalex.org/C2780648208 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4827541708946228 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3001793 |
| concepts[5].display_name | Land cover |
| concepts[6].id | https://openalex.org/C133462117 |
| concepts[6].level | 2 |
| concepts[6].score | 0.44932255148887634 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4929239 |
| concepts[6].display_name | Data collection |
| concepts[7].id | https://openalex.org/C136764020 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3740805983543396 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[7].display_name | World Wide Web |
| concepts[8].id | https://openalex.org/C77088390 |
| concepts[8].level | 1 |
| concepts[8].score | 0.35435932874679565 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[8].display_name | Database |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.33682382106781006 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.10204702615737915 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C4792198 |
| concepts[11].level | 2 |
| concepts[11].score | 0.1020016074180603 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1165944 |
| concepts[11].display_name | Land use |
| concepts[12].id | https://openalex.org/C147176958 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q77590 |
| concepts[12].display_name | Civil engineering |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C43617362 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[14].display_name | Chromatography |
| concepts[15].id | https://openalex.org/C202444582 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[15].display_name | Pure mathematics |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C185592680 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[17].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/web-crawler |
| keywords[0].score | 0.7604418992996216 |
| keywords[0].display_name | Web crawler |
| keywords[1].id | https://openalex.org/keywords/sample |
| keywords[1].score | 0.7099353075027466 |
| keywords[1].display_name | Sample (material) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6550416946411133 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/field |
| keywords[3].score | 0.4945692718029022 |
| keywords[3].display_name | Field (mathematics) |
| keywords[4].id | https://openalex.org/keywords/information-retrieval |
| keywords[4].score | 0.4855803847312927 |
| keywords[4].display_name | Information retrieval |
| keywords[5].id | https://openalex.org/keywords/land-cover |
| keywords[5].score | 0.4827541708946228 |
| keywords[5].display_name | Land cover |
| keywords[6].id | https://openalex.org/keywords/data-collection |
| keywords[6].score | 0.44932255148887634 |
| keywords[6].display_name | Data collection |
| keywords[7].id | https://openalex.org/keywords/world-wide-web |
| keywords[7].score | 0.3740805983543396 |
| keywords[7].display_name | World Wide Web |
| keywords[8].id | https://openalex.org/keywords/database |
| keywords[8].score | 0.35435932874679565 |
| keywords[8].display_name | Database |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.33682382106781006 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.10204702615737915 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/land-use |
| keywords[11].score | 0.1020016074180603 |
| keywords[11].display_name | Land use |
| language | en |
| locations[0].id | doi:10.32920/14640141 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://rshare.library.torontomu.ca/articles/journal_contribution/Active_Collection_of_Land_Cover_Sample_Data_from_Geo-Tagged_Web_Texts/14640141/1/files/28116570.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.32920/14640141 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5058638373 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1156-9353 |
| authorships[0].author.display_name | Dongyang Hou |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210141849 |
| authorships[0].affiliations[1].raw_affiliation_string | National Geomatics Center of China, 28 Lianhuachi West Road, Beijing 100830, China; |
| authorships[0].institutions[0].id | https://openalex.org/I25757504 |
| authorships[0].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | China University of Mining and Technology |
| authorships[0].institutions[1].id | https://openalex.org/I4210141849 |
| authorships[0].institutions[1].ror | https://ror.org/04z3map19 |
| authorships[0].institutions[1].type | government |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210141849 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | National Administration of Surveying, Mapping and Geoinformation of China |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dongyang Hou |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | National Geomatics Center of China, 28 Lianhuachi West Road, Beijing 100830, China;, School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; |
| authorships[1].author.id | https://openalex.org/A5100450146 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8604-9689 |
| authorships[1].author.display_name | Jun Chen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210141849 |
| authorships[1].affiliations[0].raw_affiliation_string | National Geomatics Center of China, 28 Lianhuachi West Road, Beijing 100830, China; |
| authorships[1].institutions[0].id | https://openalex.org/I4210141849 |
| authorships[1].institutions[0].ror | https://ror.org/04z3map19 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210141849 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | National Administration of Surveying, Mapping and Geoinformation of China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jun Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | National Geomatics Center of China, 28 Lianhuachi West Road, Beijing 100830, China; |
| authorships[2].author.id | https://openalex.org/A5100448261 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2853-5034 |
| authorships[2].author.display_name | Hao Wu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210141849 |
| authorships[2].affiliations[0].raw_affiliation_string | National Geomatics Center of China, 28 Lianhuachi West Road, Beijing 100830, China; |
| authorships[2].institutions[0].id | https://openalex.org/I4210141849 |
| authorships[2].institutions[0].ror | https://ror.org/04z3map19 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210141849 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | National Administration of Surveying, Mapping and Geoinformation of China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hao Wu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Geomatics Center of China, 28 Lianhuachi West Road, Beijing 100830, China; |
| authorships[3].author.id | https://openalex.org/A5047703394 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8244-5681 |
| authorships[3].author.display_name | Songnian Li |
| authorships[3].countries | CA, CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I530967 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Civil Engineering, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada |
| authorships[3].institutions[0].id | https://openalex.org/I530967 |
| authorships[3].institutions[0].ror | https://ror.org/05g13zd79 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I530967 |
| authorships[3].institutions[0].country_code | CA |
| authorships[3].institutions[0].display_name | Toronto Metropolitan University |
| authorships[3].institutions[1].id | https://openalex.org/I25757504 |
| authorships[3].institutions[1].ror | https://ror.org/01xt2dr21 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I25757504 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | China University of Mining and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Songnian Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Civil Engineering, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada, School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; |
| authorships[4].author.id | https://openalex.org/A5100404363 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5455-3792 |
| authorships[4].author.display_name | Feifei Chen |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I139660479 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Geosciences and Info-Physics, Central South University, Changsha 410083, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I4210141849 |
| authorships[4].affiliations[1].raw_affiliation_string | National Geomatics Center of China, 28 Lianhuachi West Road, Beijing 100830, China; |
| authorships[4].institutions[0].id | https://openalex.org/I139660479 |
| authorships[4].institutions[0].ror | https://ror.org/00f1zfq44 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I139660479 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Central South University |
| authorships[4].institutions[1].id | https://openalex.org/I4210141849 |
| authorships[4].institutions[1].ror | https://ror.org/04z3map19 |
| authorships[4].institutions[1].type | government |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210141849 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | National Administration of Surveying, Mapping and Geoinformation of China |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Feifei Chen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | National Geomatics Center of China, 28 Lianhuachi West Road, Beijing 100830, China;, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China |
| authorships[5].author.id | https://openalex.org/A5078334125 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Weiwei Zhang Zhang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210141849 |
| authorships[5].affiliations[0].raw_affiliation_string | National Geomatics Center of China, 28 Lianhuachi West Road, Beijing 100830, China; |
| authorships[5].institutions[0].id | https://openalex.org/I4210141849 |
| authorships[5].institutions[0].ror | https://ror.org/04z3map19 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210141849 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | National Administration of Surveying, Mapping and Geoinformation of China |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Weiwei Zhang Zhang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | National Geomatics Center of China, 28 Lianhuachi West Road, Beijing 100830, China; |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://rshare.library.torontomu.ca/articles/journal_contribution/Active_Collection_of_Land_Cover_Sample_Data_from_Geo-Tagged_Web_Texts/14640141/1/files/28116570.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Active Collection of Land Cover Sample Data from Geo-Tagged Web Texts |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10757 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.9980999827384949 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3305 |
| primary_topic.subfield.display_name | Geography, Planning and Development |
| primary_topic.display_name | Geographic Information Systems Studies |
| related_works | https://openalex.org/W3005260231, https://openalex.org/W2904469652, https://openalex.org/W4362647146, https://openalex.org/W2383572231, https://openalex.org/W2042034567, https://openalex.org/W3179424333, https://openalex.org/W2782340266, https://openalex.org/W4230722125, https://openalex.org/W2149158941, https://openalex.org/W1566984846 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.32920/14640141 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://rshare.library.torontomu.ca/articles/journal_contribution/Active_Collection_of_Land_Cover_Sample_Data_from_Geo-Tagged_Web_Texts/14640141/1/files/28116570.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.32920/14640141 |
| primary_location.id | doi:10.32920/14640141 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://rshare.library.torontomu.ca/articles/journal_contribution/Active_Collection_of_Land_Cover_Sample_Data_from_Geo-Tagged_Web_Texts/14640141/1/files/28116570.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.32920/14640141 |
| publication_date | 2021-05-21 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2406886037, https://openalex.org/W1980385468, https://openalex.org/W2006929658, https://openalex.org/W6837694698, https://openalex.org/W2013326020, https://openalex.org/W2030773894, https://openalex.org/W2114279421, https://openalex.org/W2011692026, https://openalex.org/W2110832309, https://openalex.org/W2035376183, https://openalex.org/W2041533898, https://openalex.org/W2010201587, https://openalex.org/W2110031561, https://openalex.org/W1964302861, https://openalex.org/W2065040528, https://openalex.org/W2042171707, https://openalex.org/W1971631718, https://openalex.org/W2015954181, https://openalex.org/W2136840027, https://openalex.org/W2086604341, https://openalex.org/W3125448378, https://openalex.org/W2153362723, https://openalex.org/W2042713681, https://openalex.org/W2054153630, https://openalex.org/W2048018384, https://openalex.org/W2090574315, https://openalex.org/W2065167755, https://openalex.org/W2049212347, https://openalex.org/W2042831537, https://openalex.org/W2110254824, https://openalex.org/W1993918804, https://openalex.org/W2004809710, https://openalex.org/W2388705664, https://openalex.org/W110516368, https://openalex.org/W2085554865, https://openalex.org/W2040099150, https://openalex.org/W2151809999, https://openalex.org/W1992721634, https://openalex.org/W2154506601, https://openalex.org/W1971109292, https://openalex.org/W2144364794, https://openalex.org/W2023971456, https://openalex.org/W2378927565, https://openalex.org/W2025842651, https://openalex.org/W54362901, https://openalex.org/W2021504710, https://openalex.org/W2011500029, https://openalex.org/W2147462896, https://openalex.org/W150194108 |
| referenced_works_count | 49 |
| abstract_inverted_index.A | 120, 174 |
| abstract_inverted_index.a | 78, 100, 184 |
| abstract_inverted_index.In | 30 |
| abstract_inverted_index.LC | 47, 65, 86, 137, 231 |
| abstract_inverted_index.an | 3, 91 |
| abstract_inverted_index.as | 77, 153 |
| abstract_inverted_index.at | 183 |
| abstract_inverted_index.in | 6, 151 |
| abstract_inverted_index.is | 25, 127, 209 |
| abstract_inverted_index.of | 23, 53, 73, 166, 176, 186, 204, 242 |
| abstract_inverted_index.on | 38, 112, 124 |
| abstract_inverted_index.or | 19 |
| abstract_inverted_index.to | 84, 105, 130, 161, 211 |
| abstract_inverted_index.The | 96, 191, 218 |
| abstract_inverted_index.and | 28, 41, 61, 89, 116, 143, 234 |
| abstract_inverted_index.are | 14, 36, 226 |
| abstract_inverted_index.can | 238 |
| abstract_inverted_index.for | 46, 63, 107, 230 |
| abstract_inverted_index.has | 57 |
| abstract_inverted_index.map | 10, 48, 66, 87, 232 |
| abstract_inverted_index.new | 79 |
| abstract_inverted_index.per | 189 |
| abstract_inverted_index.the | 39, 71, 132, 148, 235, 240 |
| abstract_inverted_index.was | 206 |
| abstract_inverted_index.web | 40, 75, 103, 109, 134, 157, 179, 224 |
| abstract_inverted_index.(LC) | 9 |
| abstract_inverted_index.0.58 | 187 |
| abstract_inverted_index.6283 | 177 |
| abstract_inverted_index.This | 68 |
| abstract_inverted_index.been | 59 |
| abstract_inverted_index.data | 1, 56, 82, 93, 121, 229, 244 |
| abstract_inverted_index.deep | 102 |
| abstract_inverted_index.from | 214 |
| abstract_inverted_index.into | 136, 199 |
| abstract_inverted_index.kind | 52 |
| abstract_inverted_index.land | 7, 113, 170 |
| abstract_inverted_index.role | 5 |
| abstract_inverted_index.show | 221 |
| abstract_inverted_index.that | 212, 222 |
| abstract_inverted_index.then | 128 |
| abstract_inverted_index.they | 13, 42 |
| abstract_inverted_index.this | 51 |
| abstract_inverted_index.used | 62 |
| abstract_inverted_index.uses | 99 |
| abstract_inverted_index.were | 159, 181, 197 |
| abstract_inverted_index.82.2% | 205 |
| abstract_inverted_index.China | 152 |
| abstract_inverted_index.Using | 140 |
| abstract_inverted_index.about | 194 |
| abstract_inverted_index.areas | 196 |
| abstract_inverted_index.based | 111, 123 |
| abstract_inverted_index.class | 165 |
| abstract_inverted_index.close | 210 |
| abstract_inverted_index.cover | 8, 171 |
| abstract_inverted_index.data. | 139, 201 |
| abstract_inverted_index.field | 17 |
| abstract_inverted_index.image | 20 |
| abstract_inverted_index.paper | 69 |
| abstract_inverted_index.plays | 2 |
| abstract_inverted_index.rules | 118 |
| abstract_inverted_index.speed | 185 |
| abstract_inverted_index.study | 154 |
| abstract_inverted_index.texts | 35, 76, 110, 135, 158, 180, 188, 193, 225 |
| abstract_inverted_index.three | 141, 144 |
| abstract_inverted_index.total | 175 |
| abstract_inverted_index.under | 147 |
| abstract_inverted_index.which | 24, 208 |
| abstract_inverted_index.Sample | 0 |
| abstract_inverted_index.active | 92 |
| abstract_inverted_index.areas, | 155 |
| abstract_inverted_index.assist | 85 |
| abstract_inverted_index.buffer | 125 |
| abstract_inverted_index.either | 22 |
| abstract_inverted_index.expert | 216 |
| abstract_inverted_index.formal | 215 |
| abstract_inverted_index.global | 169 |
| abstract_inverted_index.recent | 31 |
| abstract_inverted_index.sample | 81, 138, 200, 243 |
| abstract_inverted_index.search | 106 |
| abstract_inverted_index.seldom | 58 |
| abstract_inverted_index.source | 83 |
| abstract_inverted_index.survey | 18 |
| abstract_inverted_index.years, | 32 |
| abstract_inverted_index.Central | 149 |
| abstract_inverted_index.contain | 43 |
| abstract_inverted_index.convert | 131 |
| abstract_inverted_index.costly, | 26 |
| abstract_inverted_index.crawler | 104 |
| abstract_inverted_index.derived | 213 |
| abstract_inverted_index.improve | 239 |
| abstract_inverted_index.massive | 33 |
| abstract_inverted_index.results | 220 |
| abstract_inverted_index.second. | 190 |
| abstract_inverted_index.special | 54 |
| abstract_inverted_index.surface | 164 |
| abstract_inverted_index.textual | 55 |
| abstract_inverted_index.through | 16 |
| abstract_inverted_index.30-meter | 168 |
| abstract_inverted_index.However, | 50 |
| abstract_inverted_index.User’s | 202 |
| abstract_inverted_index.accuracy | 203 |
| abstract_inverted_index.analysis | 126 |
| abstract_inverted_index.analyzed | 60 |
| abstract_inverted_index.approach | 98, 237 |
| abstract_inverted_index.built-up | 195 |
| abstract_inverted_index.datasets | 172 |
| abstract_inverted_index.directly | 146 |
| abstract_inverted_index.emerging | 37 |
| abstract_inverted_index.examines | 70 |
| abstract_inverted_index.keywords | 115 |
| abstract_inverted_index.proposed | 97, 236 |
| abstract_inverted_index.proposes | 90 |
| abstract_inverted_index.validate | 162 |
| abstract_inverted_index.valuable | 44, 227 |
| abstract_inverted_index.China’s | 167 |
| abstract_inverted_index.achieved, | 207 |
| abstract_inverted_index.ancillary | 228 |
| abstract_inverted_index.approach. | 95 |
| abstract_inverted_index.collected | 15, 133, 160, 182, 192 |
| abstract_inverted_index.cost-free | 80 |
| abstract_inverted_index.important | 4 |
| abstract_inverted_index.matching. | 119 |
| abstract_inverted_index.performed | 129 |
| abstract_inverted_index.potential | 72 |
| abstract_inverted_index.provinces | 142 |
| abstract_inverted_index.Government | 150 |
| abstract_inverted_index.artificial | 163 |
| abstract_inverted_index.collection | 94 |
| abstract_inverted_index.customized | 101 |
| abstract_inverted_index.efficiency | 241 |
| abstract_inverted_index.geo-tagged | 34, 74, 108, 156, 178, 223 |
| abstract_inverted_index.supporting | 64 |
| abstract_inverted_index.validation | 88, 233 |
| abstract_inverted_index.collection. | 245 |
| abstract_inverted_index.information | 45 |
| abstract_inverted_index.preliminary | 219 |
| abstract_inverted_index.transformed | 198 |
| abstract_inverted_index.validation. | 11, 49, 67, 217 |
| abstract_inverted_index.string-based | 117 |
| abstract_inverted_index.cover-related | 114 |
| abstract_inverted_index.Traditionally, | 12 |
| abstract_inverted_index.municipalities | 145 |
| abstract_inverted_index.transformation | 122 |
| abstract_inverted_index.interpretation, | 21 |
| abstract_inverted_index.labor-intensive | 27 |
| abstract_inverted_index.time-consuming. | 29 |
| abstract_inverted_index.(GlobeLand30-2010). | 173 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.41313447 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |