Active Learning Pipeline for Brain Mapping in a High Performance Computing Environment Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1109/hpec43674.2020.9286225
This paper describes a scalable active learning pipeline prototype for large-scale brain mapping that leverages high performance computing power. It enables high-throughput evaluation of algorithm results, which, after human review, are used for iterative machine learning model training. Image processing and machine learning are performed in a batch layer. Benchmark testing of image processing using pMATLAB shows that a 100$\times$ increase in throughput (10,000%) can be achieved while total processing time only increases by 9% on Xeon-G6 CPUs and by 22% on Xeon-E5 CPUs, indicating robust scalability. The images and algorithm results are provided through a serving layer to a browser-based user interface for interactive review. This pipeline has the potential to greatly reduce the manual annotation burden and improve the overall performance of machine learning-based brain mapping.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1109/hpec43674.2020.9286225
- OA Status
- green
- Cited By
- 1
- References
- 34
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3038076319
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3038076319Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/hpec43674.2020.9286225Digital Object Identifier
- Title
-
Active Learning Pipeline for Brain Mapping in a High Performance Computing EnvironmentWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-09-22Full publication date if available
- Authors
-
Adam Michaleas, Lars Gjesteby, M Snyder, David Chavez, Meagan Ash, Matthew A. Melton, Damon G. Lamb, Sara N. Burke, Kevin J. Otto, Lee Kamentsky, Webster Guan, Kwanghun Chung, Laura J. BrattainList of authors in order
- Landing page
-
https://doi.org/10.1109/hpec43674.2020.9286225Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2006.14684Direct OA link when available
- Concepts
-
Pipeline (software), Computer science, Scalability, Xeon, Throughput, Benchmark (surveying), Artificial intelligence, Image processing, Computer architecture, Machine learning, Layer (electronics), Xeon Phi, Parallel computing, Embedded system, Image (mathematics), Operating system, Organic chemistry, Geodesy, Wireless, Chemistry, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3038076319 |
|---|---|
| doi | https://doi.org/10.1109/hpec43674.2020.9286225 |
| ids.doi | https://doi.org/10.1109/hpec43674.2020.9286225 |
| ids.mag | 3038076319 |
| ids.openalex | https://openalex.org/W3038076319 |
| fwci | 0.14685955 |
| type | preprint |
| title | Active Learning Pipeline for Brain Mapping in a High Performance Computing Environment |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 6 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T12072 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9926000237464905 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and Algorithms |
| topics[1].id | https://openalex.org/T12859 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.975600004196167 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1304 |
| topics[1].subfield.display_name | Biophysics |
| topics[1].display_name | Cell Image Analysis Techniques |
| topics[2].id | https://openalex.org/T10581 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.968500018119812 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Neural dynamics and brain function |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C43521106 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8266374468803406 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[0].display_name | Pipeline (software) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8147448897361755 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C48044578 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7629203200340271 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[2].display_name | Scalability |
| concepts[3].id | https://openalex.org/C145108525 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6588536500930786 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q656154 |
| concepts[3].display_name | Xeon |
| concepts[4].id | https://openalex.org/C157764524 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5789192318916321 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1383412 |
| concepts[4].display_name | Throughput |
| concepts[5].id | https://openalex.org/C185798385 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5084885358810425 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[5].display_name | Benchmark (surveying) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.47038164734840393 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C9417928 |
| concepts[7].level | 3 |
| concepts[7].score | 0.43257245421409607 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[7].display_name | Image processing |
| concepts[8].id | https://openalex.org/C118524514 |
| concepts[8].level | 1 |
| concepts[8].score | 0.42942821979522705 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q173212 |
| concepts[8].display_name | Computer architecture |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.42405861616134644 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C2779227376 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4115641713142395 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q6505497 |
| concepts[10].display_name | Layer (electronics) |
| concepts[11].id | https://openalex.org/C96972482 |
| concepts[11].level | 2 |
| concepts[11].score | 0.41107118129730225 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1049168 |
| concepts[11].display_name | Xeon Phi |
| concepts[12].id | https://openalex.org/C173608175 |
| concepts[12].level | 1 |
| concepts[12].score | 0.36105406284332275 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[12].display_name | Parallel computing |
| concepts[13].id | https://openalex.org/C149635348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3321193754673004 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[13].display_name | Embedded system |
| concepts[14].id | https://openalex.org/C115961682 |
| concepts[14].level | 2 |
| concepts[14].score | 0.27523016929626465 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[14].display_name | Image (mathematics) |
| concepts[15].id | https://openalex.org/C111919701 |
| concepts[15].level | 1 |
| concepts[15].score | 0.22012612223625183 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[15].display_name | Operating system |
| concepts[16].id | https://openalex.org/C178790620 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[16].display_name | Organic chemistry |
| concepts[17].id | https://openalex.org/C13280743 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[17].display_name | Geodesy |
| concepts[18].id | https://openalex.org/C555944384 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[18].display_name | Wireless |
| concepts[19].id | https://openalex.org/C185592680 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[19].display_name | Chemistry |
| concepts[20].id | https://openalex.org/C205649164 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[20].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/pipeline |
| keywords[0].score | 0.8266374468803406 |
| keywords[0].display_name | Pipeline (software) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8147448897361755 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/scalability |
| keywords[2].score | 0.7629203200340271 |
| keywords[2].display_name | Scalability |
| keywords[3].id | https://openalex.org/keywords/xeon |
| keywords[3].score | 0.6588536500930786 |
| keywords[3].display_name | Xeon |
| keywords[4].id | https://openalex.org/keywords/throughput |
| keywords[4].score | 0.5789192318916321 |
| keywords[4].display_name | Throughput |
| keywords[5].id | https://openalex.org/keywords/benchmark |
| keywords[5].score | 0.5084885358810425 |
| keywords[5].display_name | Benchmark (surveying) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.47038164734840393 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/image-processing |
| keywords[7].score | 0.43257245421409607 |
| keywords[7].display_name | Image processing |
| keywords[8].id | https://openalex.org/keywords/computer-architecture |
| keywords[8].score | 0.42942821979522705 |
| keywords[8].display_name | Computer architecture |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.42405861616134644 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/layer |
| keywords[10].score | 0.4115641713142395 |
| keywords[10].display_name | Layer (electronics) |
| keywords[11].id | https://openalex.org/keywords/xeon-phi |
| keywords[11].score | 0.41107118129730225 |
| keywords[11].display_name | Xeon Phi |
| keywords[12].id | https://openalex.org/keywords/parallel-computing |
| keywords[12].score | 0.36105406284332275 |
| keywords[12].display_name | Parallel computing |
| keywords[13].id | https://openalex.org/keywords/embedded-system |
| keywords[13].score | 0.3321193754673004 |
| keywords[13].display_name | Embedded system |
| keywords[14].id | https://openalex.org/keywords/image |
| keywords[14].score | 0.27523016929626465 |
| keywords[14].display_name | Image (mathematics) |
| keywords[15].id | https://openalex.org/keywords/operating-system |
| keywords[15].score | 0.22012612223625183 |
| keywords[15].display_name | Operating system |
| language | en |
| locations[0].id | doi:10.1109/hpec43674.2020.9286225 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2020 IEEE High Performance Extreme Computing Conference (HPEC) |
| locations[0].landing_page_url | https://doi.org/10.1109/hpec43674.2020.9286225 |
| locations[1].id | pmh:oai:arXiv.org:2006.14684 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2006.14684 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2006.14684 |
| locations[2].id | mag:3038076319 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | arXiv (Cornell University) |
| locations[2].landing_page_url | https://arxiv.org/pdf/2006.14684 |
| locations[3].id | pmh:oai:dspace.mit.edu:1721.1/137292 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400425 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DSpace@MIT (Massachusetts Institute of Technology) |
| locations[3].source.host_organization | https://openalex.org/I63966007 |
| locations[3].source.host_organization_name | Massachusetts Institute of Technology |
| locations[3].source.host_organization_lineage | https://openalex.org/I63966007 |
| locations[3].license | cc-by-nc-sa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Article |
| locations[3].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | arXiv |
| locations[3].landing_page_url | https://hdl.handle.net/1721.1/137292 |
| locations[4].id | doi:10.48550/arxiv.2006.14684 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400194 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | arXiv (Cornell University) |
| locations[4].source.host_organization | https://openalex.org/I205783295 |
| locations[4].source.host_organization_name | Cornell University |
| locations[4].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | |
| locations[4].raw_type | article |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | https://doi.org/10.48550/arxiv.2006.14684 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5016624503 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7402-8303 |
| authorships[0].author.display_name | Adam Michaleas |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210122954 |
| authorships[0].affiliations[0].raw_affiliation_string | MIT Lincoln Laboratory, Lexington, MA USA |
| authorships[0].institutions[0].id | https://openalex.org/I4210122954 |
| authorships[0].institutions[0].ror | https://ror.org/022z6jk58 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210122954, https://openalex.org/I63966007 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | MIT Lincoln Laboratory |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Adam Michaleas |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | MIT Lincoln Laboratory, Lexington, MA USA |
| authorships[1].author.id | https://openalex.org/A5008693878 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5021-7705 |
| authorships[1].author.display_name | Lars Gjesteby |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210122954 |
| authorships[1].affiliations[0].raw_affiliation_string | MIT Lincoln Laboratory, Lexington, MA USA |
| authorships[1].institutions[0].id | https://openalex.org/I4210122954 |
| authorships[1].institutions[0].ror | https://ror.org/022z6jk58 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210122954, https://openalex.org/I63966007 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | MIT Lincoln Laboratory |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lars A. Gjesteby |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | MIT Lincoln Laboratory, Lexington, MA USA |
| authorships[2].author.id | https://openalex.org/A5024120181 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0784-7987 |
| authorships[2].author.display_name | M Snyder |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210122954 |
| authorships[2].affiliations[0].raw_affiliation_string | MIT Lincoln Laboratory, Lexington, MA USA |
| authorships[2].institutions[0].id | https://openalex.org/I4210122954 |
| authorships[2].institutions[0].ror | https://ror.org/022z6jk58 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210122954, https://openalex.org/I63966007 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | MIT Lincoln Laboratory |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Michael Snyder |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | MIT Lincoln Laboratory, Lexington, MA USA |
| authorships[3].author.id | https://openalex.org/A5112544495 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | David Chavez |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210122954 |
| authorships[3].affiliations[0].raw_affiliation_string | MIT Lincoln Laboratory, Lexington, MA USA |
| authorships[3].institutions[0].id | https://openalex.org/I4210122954 |
| authorships[3].institutions[0].ror | https://ror.org/022z6jk58 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210122954, https://openalex.org/I63966007 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | MIT Lincoln Laboratory |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | David Chavez |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | MIT Lincoln Laboratory, Lexington, MA USA |
| authorships[4].author.id | https://openalex.org/A5003635468 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Meagan Ash |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Florida, Gainesville FL, USA |
| authorships[4].institutions[0].id | https://openalex.org/I33213144 |
| authorships[4].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Florida |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Meagan Ash |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Florida, Gainesville FL, USA |
| authorships[5].author.id | https://openalex.org/A5029061251 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Matthew A. Melton |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[5].affiliations[0].raw_affiliation_string | University of Florida, Gainesville FL, USA |
| authorships[5].institutions[0].id | https://openalex.org/I33213144 |
| authorships[5].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Florida |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Matthew A. Melton |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | University of Florida, Gainesville FL, USA |
| authorships[6].author.id | https://openalex.org/A5003104874 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-0389-7610 |
| authorships[6].author.display_name | Damon G. Lamb |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[6].affiliations[0].raw_affiliation_string | University of Florida, Gainesville FL, USA |
| authorships[6].institutions[0].id | https://openalex.org/I33213144 |
| authorships[6].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of Florida |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Damon G. Lamb |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | University of Florida, Gainesville FL, USA |
| authorships[7].author.id | https://openalex.org/A5021110898 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-1773-1294 |
| authorships[7].author.display_name | Sara N. Burke |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[7].affiliations[0].raw_affiliation_string | University of Florida, Gainesville FL, USA |
| authorships[7].institutions[0].id | https://openalex.org/I33213144 |
| authorships[7].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | University of Florida |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Sara N. Burke |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | University of Florida, Gainesville FL, USA |
| authorships[8].author.id | https://openalex.org/A5019075609 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-2317-6194 |
| authorships[8].author.display_name | Kevin J. Otto |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[8].affiliations[0].raw_affiliation_string | University of Florida, Gainesville FL, USA |
| authorships[8].institutions[0].id | https://openalex.org/I33213144 |
| authorships[8].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | University of Florida |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Kevin J. Otto |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | University of Florida, Gainesville FL, USA |
| authorships[9].author.id | https://openalex.org/A5073908382 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-8161-3604 |
| authorships[9].author.display_name | Lee Kamentsky |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[9].affiliations[0].raw_affiliation_string | Massachusetts Institute of Technology Cambridge, MA USA |
| authorships[9].institutions[0].id | https://openalex.org/I63966007 |
| authorships[9].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Lee Kamentsky |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Massachusetts Institute of Technology Cambridge, MA USA |
| authorships[10].author.id | https://openalex.org/A5077689379 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-9115-9070 |
| authorships[10].author.display_name | Webster Guan |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[10].affiliations[0].raw_affiliation_string | Massachusetts Institute of Technology Cambridge, MA USA |
| authorships[10].institutions[0].id | https://openalex.org/I63966007 |
| authorships[10].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Webster Guan |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Massachusetts Institute of Technology Cambridge, MA USA |
| authorships[11].author.id | https://openalex.org/A5060000983 |
| authorships[11].author.orcid | |
| authorships[11].author.display_name | Kwanghun Chung |
| authorships[11].countries | US |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[11].affiliations[0].raw_affiliation_string | Massachusetts Institute of Technology Cambridge, MA USA |
| authorships[11].institutions[0].id | https://openalex.org/I63966007 |
| authorships[11].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[11].institutions[0].country_code | US |
| authorships[11].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Kwanghun Chung |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Massachusetts Institute of Technology Cambridge, MA USA |
| authorships[12].author.id | https://openalex.org/A5026644166 |
| authorships[12].author.orcid | |
| authorships[12].author.display_name | Laura J. Brattain |
| authorships[12].countries | US |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I4210122954 |
| authorships[12].affiliations[0].raw_affiliation_string | MIT Lincoln Laboratory, Lexington, MA USA |
| authorships[12].institutions[0].id | https://openalex.org/I4210122954 |
| authorships[12].institutions[0].ror | https://ror.org/022z6jk58 |
| authorships[12].institutions[0].type | facility |
| authorships[12].institutions[0].lineage | https://openalex.org/I4210122954, https://openalex.org/I63966007 |
| authorships[12].institutions[0].country_code | US |
| authorships[12].institutions[0].display_name | MIT Lincoln Laboratory |
| authorships[12].author_position | last |
| authorships[12].raw_author_name | Laura J. Brattain |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | MIT Lincoln Laboratory, Lexington, MA USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2006.14684 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Active Learning Pipeline for Brain Mapping in a High Performance Computing Environment |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12072 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9926000237464905 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and Algorithms |
| related_works | https://openalex.org/W3115395490, https://openalex.org/W2308799417, https://openalex.org/W2769745873, https://openalex.org/W3116059414, https://openalex.org/W3159412282, https://openalex.org/W3169512402, https://openalex.org/W2088079057, https://openalex.org/W2969539885, https://openalex.org/W3208162305, https://openalex.org/W3163183483, https://openalex.org/W2787162755, https://openalex.org/W2901764946, https://openalex.org/W2969301373, https://openalex.org/W2908368980, https://openalex.org/W3016110386, https://openalex.org/W3098602506, https://openalex.org/W1991126176, https://openalex.org/W949642480, https://openalex.org/W2741639990, https://openalex.org/W2914959512 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | pmh:oai:arXiv.org:2006.14684 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2006.14684 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2006.14684 |
| primary_location.id | doi:10.1109/hpec43674.2020.9286225 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2020 IEEE High Performance Extreme Computing Conference (HPEC) |
| primary_location.landing_page_url | https://doi.org/10.1109/hpec43674.2020.9286225 |
| publication_date | 2020-09-22 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W6765205869, https://openalex.org/W2594660495, https://openalex.org/W2955852551, https://openalex.org/W2963150697, https://openalex.org/W6639824700, https://openalex.org/W6718752587, https://openalex.org/W2911823761, https://openalex.org/W2019062120, https://openalex.org/W2760861884, https://openalex.org/W2131323843, https://openalex.org/W2010114799, https://openalex.org/W1596936080, https://openalex.org/W2061490418, https://openalex.org/W2424791915, https://openalex.org/W2025818287, https://openalex.org/W1986446939, https://openalex.org/W1989396876, https://openalex.org/W2051036306, https://openalex.org/W1508135620, https://openalex.org/W2046451474, https://openalex.org/W2991150139, https://openalex.org/W6739899774, https://openalex.org/W2099540110, https://openalex.org/W2890546378, https://openalex.org/W6741552759, https://openalex.org/W2003102216, https://openalex.org/W2903158431, https://openalex.org/W2625559849, https://openalex.org/W2738036597, https://openalex.org/W2799093543, https://openalex.org/W2774217687, https://openalex.org/W2957395818, https://openalex.org/W2464708700, https://openalex.org/W1901129140 |
| referenced_works_count | 34 |
| abstract_inverted_index.a | 3, 46, 58, 95, 99 |
| abstract_inverted_index.9% | 74 |
| abstract_inverted_index.It | 19 |
| abstract_inverted_index.be | 65 |
| abstract_inverted_index.by | 73, 79 |
| abstract_inverted_index.in | 45, 61 |
| abstract_inverted_index.of | 23, 51, 123 |
| abstract_inverted_index.on | 75, 81 |
| abstract_inverted_index.to | 98, 111 |
| abstract_inverted_index.22% | 80 |
| abstract_inverted_index.The | 87 |
| abstract_inverted_index.and | 40, 78, 89, 118 |
| abstract_inverted_index.are | 30, 43, 92 |
| abstract_inverted_index.can | 64 |
| abstract_inverted_index.for | 9, 32, 103 |
| abstract_inverted_index.has | 108 |
| abstract_inverted_index.the | 109, 114, 120 |
| abstract_inverted_index.CPUs | 77 |
| abstract_inverted_index.This | 0, 106 |
| abstract_inverted_index.high | 15 |
| abstract_inverted_index.only | 71 |
| abstract_inverted_index.that | 13, 57 |
| abstract_inverted_index.time | 70 |
| abstract_inverted_index.used | 31 |
| abstract_inverted_index.user | 101 |
| abstract_inverted_index.CPUs, | 83 |
| abstract_inverted_index.Image | 38 |
| abstract_inverted_index.after | 27 |
| abstract_inverted_index.batch | 47 |
| abstract_inverted_index.brain | 11, 126 |
| abstract_inverted_index.human | 28 |
| abstract_inverted_index.image | 52 |
| abstract_inverted_index.layer | 97 |
| abstract_inverted_index.model | 36 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.shows | 56 |
| abstract_inverted_index.total | 68 |
| abstract_inverted_index.using | 54 |
| abstract_inverted_index.while | 67 |
| abstract_inverted_index.active | 5 |
| abstract_inverted_index.burden | 117 |
| abstract_inverted_index.images | 88 |
| abstract_inverted_index.layer. | 48 |
| abstract_inverted_index.manual | 115 |
| abstract_inverted_index.power. | 18 |
| abstract_inverted_index.reduce | 113 |
| abstract_inverted_index.robust | 85 |
| abstract_inverted_index.which, | 26 |
| abstract_inverted_index.Xeon-E5 | 82 |
| abstract_inverted_index.Xeon-G6 | 76 |
| abstract_inverted_index.enables | 20 |
| abstract_inverted_index.greatly | 112 |
| abstract_inverted_index.improve | 119 |
| abstract_inverted_index.machine | 34, 41, 124 |
| abstract_inverted_index.mapping | 12 |
| abstract_inverted_index.overall | 121 |
| abstract_inverted_index.pMATLAB | 55 |
| abstract_inverted_index.results | 91 |
| abstract_inverted_index.review, | 29 |
| abstract_inverted_index.review. | 105 |
| abstract_inverted_index.serving | 96 |
| abstract_inverted_index.testing | 50 |
| abstract_inverted_index.through | 94 |
| abstract_inverted_index.achieved | 66 |
| abstract_inverted_index.increase | 60 |
| abstract_inverted_index.learning | 6, 35, 42 |
| abstract_inverted_index.mapping. | 127 |
| abstract_inverted_index.pipeline | 7, 107 |
| abstract_inverted_index.provided | 93 |
| abstract_inverted_index.results, | 25 |
| abstract_inverted_index.scalable | 4 |
| abstract_inverted_index.(10,000%) | 63 |
| abstract_inverted_index.Benchmark | 49 |
| abstract_inverted_index.algorithm | 24, 90 |
| abstract_inverted_index.computing | 17 |
| abstract_inverted_index.describes | 2 |
| abstract_inverted_index.increases | 72 |
| abstract_inverted_index.interface | 102 |
| abstract_inverted_index.iterative | 33 |
| abstract_inverted_index.leverages | 14 |
| abstract_inverted_index.performed | 44 |
| abstract_inverted_index.potential | 110 |
| abstract_inverted_index.prototype | 8 |
| abstract_inverted_index.training. | 37 |
| abstract_inverted_index.annotation | 116 |
| abstract_inverted_index.evaluation | 22 |
| abstract_inverted_index.indicating | 84 |
| abstract_inverted_index.processing | 39, 53, 69 |
| abstract_inverted_index.throughput | 62 |
| abstract_inverted_index.100$\times$ | 59 |
| abstract_inverted_index.interactive | 104 |
| abstract_inverted_index.large-scale | 10 |
| abstract_inverted_index.performance | 16, 122 |
| abstract_inverted_index.scalability. | 86 |
| abstract_inverted_index.browser-based | 100 |
| abstract_inverted_index.learning-based | 125 |
| abstract_inverted_index.high-throughput | 21 |
| cited_by_percentile_year.max | 93 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 13 |
| citation_normalized_percentile.value | 0.53978352 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |