Active Prompt Tuning Enables Gpt-40 To Do Efficient Classification Of Microscopy Images Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.02639
Traditional deep learning-based methods for classifying cellular features in microscopy images require time- and labor-intensive processes for training models. Among the current limitations are major time commitments from domain experts for accurate ground truth preparation; and the need for a large amount of input image data. We previously proposed a solution that overcomes these challenges using OpenAI's GPT-4(V) model on a pilot dataset (Iba-1 immuno-stained tissue sections from 11 mouse brains). Results on the pilot dataset were equivalent in accuracy and with a substantial improvement in throughput efficiency compared to the baseline using a traditional Convolutional Neural Net (CNN)-based approach. The present study builds upon this framework using a second unique and substantially larger dataset of microscopy images. Our current approach uses a newer and faster model, GPT-4o, along with improved prompts. It was evaluated on a microscopy image dataset captured at low (10x) magnification from cresyl-violet-stained sections through the cerebellum of a total of 18 mouse brains (9 Lurcher mice, 9 wild-type controls). We used our approach to classify these images either as a control group or Lurcher mutant. Using 6 mice in the prompt set the results were correct classification for 11 out of the 12 mice (92%) with 96% higher efficiency, reduced image requirements, and lower demands on time and effort of domain experts compared to the baseline method (snapshot ensemble of CNN models). These results confirm that our approach is effective across multiple datasets from different brain regions and magnifications, with minimal overhead.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.02639
- https://arxiv.org/pdf/2411.02639
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404356177
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404356177Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.02639Digital Object Identifier
- Title
-
Active Prompt Tuning Enables Gpt-40 To Do Efficient Classification Of Microscopy ImagesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-04Full publication date if available
- Authors
-
Abhiram Kandiyana, Peter R. Mouton, Yaroslav Kolinko, Lawrence Hall, Dmitry B. GoldgofList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.02639Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.02639Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.02639Direct OA link when available
- Concepts
-
Microscopy, Computer science, Artificial intelligence, Computer vision, Materials science, Optics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404356177 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.02639 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.02639 |
| ids.openalex | https://openalex.org/W4404356177 |
| fwci | |
| type | preprint |
| title | Active Prompt Tuning Enables Gpt-40 To Do Efficient Classification Of Microscopy Images |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12859 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9128000140190125 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1304 |
| topics[0].subfield.display_name | Biophysics |
| topics[0].display_name | Cell Image Analysis Techniques |
| topics[1].id | https://openalex.org/T10862 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9077000021934509 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | AI in cancer detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C147080431 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5750285387039185 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1074953 |
| concepts[0].display_name | Microscopy |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.41626912355422974 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.39094626903533936 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3818519115447998 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C192562407 |
| concepts[4].level | 0 |
| concepts[4].score | 0.37884166836738586 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[4].display_name | Materials science |
| concepts[5].id | https://openalex.org/C120665830 |
| concepts[5].level | 1 |
| concepts[5].score | 0.23490813374519348 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[5].display_name | Optics |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.21810725331306458 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/microscopy |
| keywords[0].score | 0.5750285387039185 |
| keywords[0].display_name | Microscopy |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.41626912355422974 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.39094626903533936 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.3818519115447998 |
| keywords[3].display_name | Computer vision |
| keywords[4].id | https://openalex.org/keywords/materials-science |
| keywords[4].score | 0.37884166836738586 |
| keywords[4].display_name | Materials science |
| keywords[5].id | https://openalex.org/keywords/optics |
| keywords[5].score | 0.23490813374519348 |
| keywords[5].display_name | Optics |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.21810725331306458 |
| keywords[6].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.02639 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.02639 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.02639 |
| locations[1].id | doi:10.48550/arxiv.2411.02639 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.02639 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5105080759 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Abhiram Kandiyana |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kandiyana, Abhiram |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5038456790 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1008-4055 |
| authorships[1].author.display_name | Peter R. Mouton |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mouton, Peter R. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5035138656 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2374-5446 |
| authorships[2].author.display_name | Yaroslav Kolinko |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kolinko, Yaroslav |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5000168449 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7898-8456 |
| authorships[3].author.display_name | Lawrence Hall |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hall, Lawrence O. |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5053211631 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5461-863X |
| authorships[4].author.display_name | Dmitry B. Goldgof |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Goldgof, Dmitry |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.02639 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Active Prompt Tuning Enables Gpt-40 To Do Efficient Classification Of Microscopy Images |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12859 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9128000140190125 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1304 |
| primary_topic.subfield.display_name | Biophysics |
| primary_topic.display_name | Cell Image Analysis Techniques |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2772917594, https://openalex.org/W2036807459, https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.02639 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.02639 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.02639 |
| primary_location.id | pmh:oai:arXiv.org:2411.02639 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.02639 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.02639 |
| publication_date | 2024-11-04 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.6 | 181 |
| abstract_inverted_index.9 | 161 |
| abstract_inverted_index.a | 39, 49, 60, 82, 93, 108, 122, 136, 152, 174 |
| abstract_inverted_index.(9 | 158 |
| abstract_inverted_index.11 | 68, 193 |
| abstract_inverted_index.12 | 197 |
| abstract_inverted_index.18 | 155 |
| abstract_inverted_index.It | 132 |
| abstract_inverted_index.We | 46, 164 |
| abstract_inverted_index.as | 173 |
| abstract_inverted_index.at | 141 |
| abstract_inverted_index.in | 8, 78, 85, 183 |
| abstract_inverted_index.is | 233 |
| abstract_inverted_index.of | 42, 115, 151, 154, 195, 214, 224 |
| abstract_inverted_index.on | 59, 72, 135, 210 |
| abstract_inverted_index.or | 177 |
| abstract_inverted_index.to | 89, 168, 218 |
| abstract_inverted_index.96% | 201 |
| abstract_inverted_index.CNN | 225 |
| abstract_inverted_index.Net | 97 |
| abstract_inverted_index.Our | 118 |
| abstract_inverted_index.The | 100 |
| abstract_inverted_index.and | 13, 35, 80, 111, 124, 207, 212, 242 |
| abstract_inverted_index.are | 23 |
| abstract_inverted_index.for | 4, 16, 30, 38, 192 |
| abstract_inverted_index.low | 142 |
| abstract_inverted_index.our | 166, 231 |
| abstract_inverted_index.out | 194 |
| abstract_inverted_index.set | 186 |
| abstract_inverted_index.the | 20, 36, 73, 90, 149, 184, 187, 196, 219 |
| abstract_inverted_index.was | 133 |
| abstract_inverted_index.deep | 1 |
| abstract_inverted_index.from | 27, 67, 145, 238 |
| abstract_inverted_index.mice | 182, 198 |
| abstract_inverted_index.need | 37 |
| abstract_inverted_index.that | 51, 230 |
| abstract_inverted_index.this | 105 |
| abstract_inverted_index.time | 25, 211 |
| abstract_inverted_index.upon | 104 |
| abstract_inverted_index.used | 165 |
| abstract_inverted_index.uses | 121 |
| abstract_inverted_index.were | 76, 189 |
| abstract_inverted_index.with | 81, 129, 200, 244 |
| abstract_inverted_index.(10x) | 143 |
| abstract_inverted_index.(92%) | 199 |
| abstract_inverted_index.Among | 19 |
| abstract_inverted_index.These | 227 |
| abstract_inverted_index.Using | 180 |
| abstract_inverted_index.along | 128 |
| abstract_inverted_index.brain | 240 |
| abstract_inverted_index.data. | 45 |
| abstract_inverted_index.group | 176 |
| abstract_inverted_index.image | 44, 138, 205 |
| abstract_inverted_index.input | 43 |
| abstract_inverted_index.large | 40 |
| abstract_inverted_index.lower | 208 |
| abstract_inverted_index.major | 24 |
| abstract_inverted_index.mice, | 160 |
| abstract_inverted_index.model | 58 |
| abstract_inverted_index.mouse | 69, 156 |
| abstract_inverted_index.newer | 123 |
| abstract_inverted_index.pilot | 61, 74 |
| abstract_inverted_index.study | 102 |
| abstract_inverted_index.these | 53, 170 |
| abstract_inverted_index.time- | 12 |
| abstract_inverted_index.total | 153 |
| abstract_inverted_index.truth | 33 |
| abstract_inverted_index.using | 55, 92, 107 |
| abstract_inverted_index.(Iba-1 | 63 |
| abstract_inverted_index.Neural | 96 |
| abstract_inverted_index.across | 235 |
| abstract_inverted_index.amount | 41 |
| abstract_inverted_index.brains | 157 |
| abstract_inverted_index.builds | 103 |
| abstract_inverted_index.domain | 28, 215 |
| abstract_inverted_index.effort | 213 |
| abstract_inverted_index.either | 172 |
| abstract_inverted_index.faster | 125 |
| abstract_inverted_index.ground | 32 |
| abstract_inverted_index.higher | 202 |
| abstract_inverted_index.images | 10, 171 |
| abstract_inverted_index.larger | 113 |
| abstract_inverted_index.method | 221 |
| abstract_inverted_index.model, | 126 |
| abstract_inverted_index.prompt | 185 |
| abstract_inverted_index.second | 109 |
| abstract_inverted_index.tissue | 65 |
| abstract_inverted_index.unique | 110 |
| abstract_inverted_index.GPT-4o, | 127 |
| abstract_inverted_index.Lurcher | 159, 178 |
| abstract_inverted_index.Results | 71 |
| abstract_inverted_index.confirm | 229 |
| abstract_inverted_index.control | 175 |
| abstract_inverted_index.correct | 190 |
| abstract_inverted_index.current | 21, 119 |
| abstract_inverted_index.dataset | 62, 75, 114, 139 |
| abstract_inverted_index.demands | 209 |
| abstract_inverted_index.experts | 29, 216 |
| abstract_inverted_index.images. | 117 |
| abstract_inverted_index.methods | 3 |
| abstract_inverted_index.minimal | 245 |
| abstract_inverted_index.models. | 18 |
| abstract_inverted_index.mutant. | 179 |
| abstract_inverted_index.present | 101 |
| abstract_inverted_index.reduced | 204 |
| abstract_inverted_index.regions | 241 |
| abstract_inverted_index.require | 11 |
| abstract_inverted_index.results | 188, 228 |
| abstract_inverted_index.through | 148 |
| abstract_inverted_index.GPT-4(V) | 57 |
| abstract_inverted_index.OpenAI's | 56 |
| abstract_inverted_index.accuracy | 79 |
| abstract_inverted_index.accurate | 31 |
| abstract_inverted_index.approach | 120, 167, 232 |
| abstract_inverted_index.baseline | 91, 220 |
| abstract_inverted_index.brains). | 70 |
| abstract_inverted_index.captured | 140 |
| abstract_inverted_index.cellular | 6 |
| abstract_inverted_index.classify | 169 |
| abstract_inverted_index.compared | 88, 217 |
| abstract_inverted_index.datasets | 237 |
| abstract_inverted_index.ensemble | 223 |
| abstract_inverted_index.features | 7 |
| abstract_inverted_index.improved | 130 |
| abstract_inverted_index.models). | 226 |
| abstract_inverted_index.multiple | 236 |
| abstract_inverted_index.prompts. | 131 |
| abstract_inverted_index.proposed | 48 |
| abstract_inverted_index.sections | 66, 147 |
| abstract_inverted_index.solution | 50 |
| abstract_inverted_index.training | 17 |
| abstract_inverted_index.(snapshot | 222 |
| abstract_inverted_index.approach. | 99 |
| abstract_inverted_index.different | 239 |
| abstract_inverted_index.effective | 234 |
| abstract_inverted_index.evaluated | 134 |
| abstract_inverted_index.framework | 106 |
| abstract_inverted_index.overcomes | 52 |
| abstract_inverted_index.overhead. | 246 |
| abstract_inverted_index.processes | 15 |
| abstract_inverted_index.wild-type | 162 |
| abstract_inverted_index.cerebellum | 150 |
| abstract_inverted_index.challenges | 54 |
| abstract_inverted_index.controls). | 163 |
| abstract_inverted_index.efficiency | 87 |
| abstract_inverted_index.equivalent | 77 |
| abstract_inverted_index.microscopy | 9, 116, 137 |
| abstract_inverted_index.previously | 47 |
| abstract_inverted_index.throughput | 86 |
| abstract_inverted_index.(CNN)-based | 98 |
| abstract_inverted_index.Traditional | 0 |
| abstract_inverted_index.classifying | 5 |
| abstract_inverted_index.commitments | 26 |
| abstract_inverted_index.efficiency, | 203 |
| abstract_inverted_index.improvement | 84 |
| abstract_inverted_index.limitations | 22 |
| abstract_inverted_index.substantial | 83 |
| abstract_inverted_index.traditional | 94 |
| abstract_inverted_index.preparation; | 34 |
| abstract_inverted_index.Convolutional | 95 |
| abstract_inverted_index.magnification | 144 |
| abstract_inverted_index.requirements, | 206 |
| abstract_inverted_index.substantially | 112 |
| abstract_inverted_index.classification | 191 |
| abstract_inverted_index.immuno-stained | 64 |
| abstract_inverted_index.learning-based | 2 |
| abstract_inverted_index.labor-intensive | 14 |
| abstract_inverted_index.magnifications, | 243 |
| abstract_inverted_index.cresyl-violet-stained | 146 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |