Active Sampling for MRI-based Sequential Decision Making Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.04586
Despite the superior diagnostic capability of Magnetic Resonance Imaging (MRI), its use as a Point-of-Care (PoC) device remains limited by high cost and complexity. To enable such a future by reducing the magnetic field strength, one key approach will be to improve sampling strategies. Previous work has shown that it is possible to make diagnostic decisions directly from k-space with fewer samples. Such work shows that single diagnostic decisions can be made, but if we aspire to see MRI as a true PoC, multiple and sequential decisions are necessary while minimizing the number of samples acquired. We present a novel multi-objective reinforcement learning framework enabling comprehensive, sequential, diagnostic evaluation from undersampled k-space data. Our approach during inference actively adapts to sequential decisions to optimally sample. To achieve this, we introduce a training methodology that identifies the samples that contribute the best to each diagnostic objective using a step-wise weighting reward function. We evaluate our approach in two sequential knee pathology assessment tasks: ACL sprain detection and cartilage thickness loss assessment. Our framework achieves diagnostic performance competitive with various policy-based benchmarks on disease detection, severity quantification, and overall sequential diagnosis, while substantially saving k-space samples. Our approach paves the way for the future of MRI as a comprehensive and affordable PoC device. Our code is publicly available at https://github.com/vios-s/MRI_Sequential_Active_Sampling
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.04586
- https://arxiv.org/pdf/2505.04586
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416095541
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416095541Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.04586Digital Object Identifier
- Title
-
Active Sampling for MRI-based Sequential Decision MakingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-07Full publication date if available
- Authors
-
Yuning Du, Jingshuai Liu, Rohan Dharmakumar, Sotirios A. TsaftarisList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.04586Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.04586Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.04586Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416095541 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.04586 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.04586 |
| ids.openalex | https://openalex.org/W4416095541 |
| fwci | |
| type | preprint |
| title | Active Sampling for MRI-based Sequential Decision Making |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.04586 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.04586 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.04586 |
| locations[1].id | doi:10.48550/arxiv.2505.04586 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.04586 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5010944460 |
| authorships[0].author.orcid | https://orcid.org/0009-0007-4995-5472 |
| authorships[0].author.display_name | Yuning Du |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Du, Yuning |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5061256870 |
| authorships[1].author.orcid | https://orcid.org/0009-0003-3104-3775 |
| authorships[1].author.display_name | Jingshuai Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liu, Jingshuai |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5086319135 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4120-4635 |
| authorships[2].author.display_name | Rohan Dharmakumar |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dharmakumar, Rohan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5054437456 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8795-9294 |
| authorships[3].author.display_name | Sotirios A. Tsaftaris |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Tsaftaris, Sotirios A. |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.04586 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Active Sampling for MRI-based Sequential Decision Making |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-28T09:06:06.231639 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.04586 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.04586 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.04586 |
| primary_location.id | pmh:oai:arXiv.org:2505.04586 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.04586 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.04586 |
| publication_date | 2025-05-07 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 13, 27, 80, 98, 130, 146, 205 |
| abstract_inverted_index.To | 24, 125 |
| abstract_inverted_index.We | 96, 151 |
| abstract_inverted_index.as | 12, 79, 204 |
| abstract_inverted_index.at | 216 |
| abstract_inverted_index.be | 39, 70 |
| abstract_inverted_index.by | 19, 29 |
| abstract_inverted_index.if | 73 |
| abstract_inverted_index.in | 155 |
| abstract_inverted_index.is | 50, 213 |
| abstract_inverted_index.it | 49 |
| abstract_inverted_index.of | 5, 93, 202 |
| abstract_inverted_index.on | 180 |
| abstract_inverted_index.to | 40, 52, 76, 119, 122, 141 |
| abstract_inverted_index.we | 74, 128 |
| abstract_inverted_index.ACL | 162 |
| abstract_inverted_index.MRI | 78, 203 |
| abstract_inverted_index.Our | 113, 170, 194, 211 |
| abstract_inverted_index.PoC | 209 |
| abstract_inverted_index.and | 22, 84, 165, 185, 207 |
| abstract_inverted_index.are | 87 |
| abstract_inverted_index.but | 72 |
| abstract_inverted_index.can | 69 |
| abstract_inverted_index.for | 199 |
| abstract_inverted_index.has | 46 |
| abstract_inverted_index.its | 10 |
| abstract_inverted_index.key | 36 |
| abstract_inverted_index.one | 35 |
| abstract_inverted_index.our | 153 |
| abstract_inverted_index.see | 77 |
| abstract_inverted_index.the | 1, 31, 91, 135, 139, 197, 200 |
| abstract_inverted_index.two | 156 |
| abstract_inverted_index.use | 11 |
| abstract_inverted_index.way | 198 |
| abstract_inverted_index.PoC, | 82 |
| abstract_inverted_index.Such | 62 |
| abstract_inverted_index.best | 140 |
| abstract_inverted_index.code | 212 |
| abstract_inverted_index.cost | 21 |
| abstract_inverted_index.each | 142 |
| abstract_inverted_index.from | 57, 109 |
| abstract_inverted_index.high | 20 |
| abstract_inverted_index.knee | 158 |
| abstract_inverted_index.loss | 168 |
| abstract_inverted_index.make | 53 |
| abstract_inverted_index.such | 26 |
| abstract_inverted_index.that | 48, 65, 133, 137 |
| abstract_inverted_index.true | 81 |
| abstract_inverted_index.will | 38 |
| abstract_inverted_index.with | 59, 176 |
| abstract_inverted_index.work | 45, 63 |
| abstract_inverted_index.(PoC) | 15 |
| abstract_inverted_index.data. | 112 |
| abstract_inverted_index.fewer | 60 |
| abstract_inverted_index.field | 33 |
| abstract_inverted_index.made, | 71 |
| abstract_inverted_index.novel | 99 |
| abstract_inverted_index.paves | 196 |
| abstract_inverted_index.shown | 47 |
| abstract_inverted_index.shows | 64 |
| abstract_inverted_index.this, | 127 |
| abstract_inverted_index.using | 145 |
| abstract_inverted_index.while | 89, 189 |
| abstract_inverted_index.(MRI), | 9 |
| abstract_inverted_index.adapts | 118 |
| abstract_inverted_index.aspire | 75 |
| abstract_inverted_index.device | 16 |
| abstract_inverted_index.during | 115 |
| abstract_inverted_index.enable | 25 |
| abstract_inverted_index.future | 28, 201 |
| abstract_inverted_index.number | 92 |
| abstract_inverted_index.reward | 149 |
| abstract_inverted_index.saving | 191 |
| abstract_inverted_index.single | 66 |
| abstract_inverted_index.sprain | 163 |
| abstract_inverted_index.tasks: | 161 |
| abstract_inverted_index.Despite | 0 |
| abstract_inverted_index.Imaging | 8 |
| abstract_inverted_index.achieve | 126 |
| abstract_inverted_index.device. | 210 |
| abstract_inverted_index.disease | 181 |
| abstract_inverted_index.improve | 41 |
| abstract_inverted_index.k-space | 58, 111, 192 |
| abstract_inverted_index.limited | 18 |
| abstract_inverted_index.overall | 186 |
| abstract_inverted_index.present | 97 |
| abstract_inverted_index.remains | 17 |
| abstract_inverted_index.sample. | 124 |
| abstract_inverted_index.samples | 94, 136 |
| abstract_inverted_index.various | 177 |
| abstract_inverted_index.Magnetic | 6 |
| abstract_inverted_index.Previous | 44 |
| abstract_inverted_index.achieves | 172 |
| abstract_inverted_index.actively | 117 |
| abstract_inverted_index.approach | 37, 114, 154, 195 |
| abstract_inverted_index.directly | 56 |
| abstract_inverted_index.enabling | 104 |
| abstract_inverted_index.evaluate | 152 |
| abstract_inverted_index.learning | 102 |
| abstract_inverted_index.magnetic | 32 |
| abstract_inverted_index.multiple | 83 |
| abstract_inverted_index.possible | 51 |
| abstract_inverted_index.publicly | 214 |
| abstract_inverted_index.reducing | 30 |
| abstract_inverted_index.samples. | 61, 193 |
| abstract_inverted_index.sampling | 42 |
| abstract_inverted_index.severity | 183 |
| abstract_inverted_index.superior | 2 |
| abstract_inverted_index.training | 131 |
| abstract_inverted_index.Resonance | 7 |
| abstract_inverted_index.acquired. | 95 |
| abstract_inverted_index.available | 215 |
| abstract_inverted_index.cartilage | 166 |
| abstract_inverted_index.decisions | 55, 68, 86, 121 |
| abstract_inverted_index.detection | 164 |
| abstract_inverted_index.framework | 103, 171 |
| abstract_inverted_index.function. | 150 |
| abstract_inverted_index.inference | 116 |
| abstract_inverted_index.introduce | 129 |
| abstract_inverted_index.necessary | 88 |
| abstract_inverted_index.objective | 144 |
| abstract_inverted_index.optimally | 123 |
| abstract_inverted_index.pathology | 159 |
| abstract_inverted_index.step-wise | 147 |
| abstract_inverted_index.strength, | 34 |
| abstract_inverted_index.thickness | 167 |
| abstract_inverted_index.weighting | 148 |
| abstract_inverted_index.affordable | 208 |
| abstract_inverted_index.assessment | 160 |
| abstract_inverted_index.benchmarks | 179 |
| abstract_inverted_index.capability | 4 |
| abstract_inverted_index.contribute | 138 |
| abstract_inverted_index.detection, | 182 |
| abstract_inverted_index.diagnosis, | 188 |
| abstract_inverted_index.diagnostic | 3, 54, 67, 107, 143, 173 |
| abstract_inverted_index.evaluation | 108 |
| abstract_inverted_index.identifies | 134 |
| abstract_inverted_index.minimizing | 90 |
| abstract_inverted_index.sequential | 85, 120, 157, 187 |
| abstract_inverted_index.assessment. | 169 |
| abstract_inverted_index.competitive | 175 |
| abstract_inverted_index.complexity. | 23 |
| abstract_inverted_index.methodology | 132 |
| abstract_inverted_index.performance | 174 |
| abstract_inverted_index.sequential, | 106 |
| abstract_inverted_index.strategies. | 43 |
| abstract_inverted_index.policy-based | 178 |
| abstract_inverted_index.undersampled | 110 |
| abstract_inverted_index.Point-of-Care | 14 |
| abstract_inverted_index.comprehensive | 206 |
| abstract_inverted_index.reinforcement | 101 |
| abstract_inverted_index.substantially | 190 |
| abstract_inverted_index.comprehensive, | 105 |
| abstract_inverted_index.multi-objective | 100 |
| abstract_inverted_index.quantification, | 184 |
| abstract_inverted_index.https://github.com/vios-s/MRI_Sequential_Active_Sampling | 217 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |